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22.101 Applied Nuclear Physics (Fall 2006) 

Lecture 13 (10/30/06) 

Radioactive-Series Decay 
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We begin with an experimental observation that in radioactive decay that the 

probability of a decay during a small time interval ∆ t, which we will denote as P( ∆ t), is 

proportional to ∆ t. Given this as a fact one can write 

P(∆t) = λ∆t (12.1) 

where λ  is the proportionality constant which we will call the decay constant.  Notice 

that this expression is meaningful only when λ ∆ t < 1, a condition which defines what 

we mean by a small time interval.  In other words, ∆ t < 1/ λ , which will turn out to be 

the mean life time of the radioisotope. 

Suppose we are interested in the survival probability S(t), the probability that the 

radioisotope does not decay during an arbitrary time interval t.  To calculate S(t) using 

(12.1) we can take the time interval t and divide it into many small, equal segments, each 

one of magnitude ∆ t. For a given t the number of such segments will be t / ∆ t = n. To 

survive the entire time interval t, we need to survive the first segment ( ∆ t)1, then the next 

segment ( ∆ t)2, …, all the way up to the nth segment ( ∆ t)n. Thus we can write 

n 

S(t) =∏[1− P((∆t) i )] 
i=1 

t= [1− λ(t / n)]n → e−λ  (12.2) 
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where the arrow indicated the limit of n →∞ , ∆t → 0 . Unlike (12.1), (12.2) is valid for 

any t. When λt  is sufficiently small compared to unity, it reduces to (12.1) as expected. 

Stated another way, (12.2) is extension of 1 – P(t) for arbitrary t.  One should also notice 

a close similarity between (12.2) and the probability that a particle will go a distance x 

without collision, e−Σx , where Σ  is the macroscopic collision cross section (recall Lec1).  

The role of the decay constant λ  in the probability of no decay in a time t is the same as 

the macroscopic cross section Σ  in the probability of no collision in a distance x.  The 

exponential attenuation in time or space is quite a general result, which one encounters 

frequently. There is another way to derive it.  Suppose the radioisotope has not decayed 

up to a time interval of t1, for it to survive the next small segment ∆ t the probability is 

just 1 - P( ∆ t) = 1 - λ ∆ t. Then we have 

S(t1 + ∆t) = S(t1 )[1− λ∆t]] (12.3) 

which we can rearrange to read 

S(t + ∆t) − S(t) 
= −λS(t) (12.4)

∆t 

Taking the limit of small ∆ t, we get  

dS(t)
= −λ (12.5)

dt 

which we can readily integrate to give (12.2), since the initial condition in this case is 

S(t=0) = 1. 

The decay of a single radioisotope is described by S(t) which depends on a single 

physical constant λ . Instead of λ  one can speak of two equivalent quantities, the half 

life t1/2 and the mean life τ . They are defined as 

S(t1/ 2 ) = 1/ 2 → t1/ 2 = ln2 / λ = 0.693/ λ (12.6) 
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∞ 

∫ dt 't ' S(t ' ) 
1and τ = 0 

∞ = (12.7)
λ

∫ dt ' S(t ' ) 
0 

Fig. 12.1 shows the relationship between these quantities and S(t). 

Fig. 12.1. The half life and mean life of a survival probability S(t). 

Radioactivity is measured in terms of the rate of radioactive decay.  The quantity 

λ N(t), where N is the number of radioisotope atoms at time t, is called activity. A 

standard unit of radioactivity has been the curie, 1 Ci = 3.7 x 1010 disintegrations/sec, 

which is roughly the activity of 1 gram of Ra226. Now it is replaced by the becquerel 

(Bq), 1 Bq = 2.7 x 10-11 Ci. An old unit which is not often used is the rutherford (106 

disintegrations/sec). 

Radioisotope Production by Bombardment 

There are two general ways of producing radioisotopes, activation by particle or 

radiation bombardment such as in a nuclear reactor or an accelerator, and the decay of a 

radioactive series. Both methods can be discussed in terms of a differential equation that 

governs the number of radioisotopes at time t, N(t).  This is a first-order linear differential 

equation with constant coefficients, to which the solution can be readily obtained.  

Although there are different situations to which one can apply this equation, the analysis 
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is fundamentally quite straightforward.  We will treat the activation problem first.  Let 

Q(t), the rate of production of the radioisotope, have the form shown in the sketch below.  

This means the production takes place at a constant Qo for a time interval (0, T), after 

which production ceases. During production, t < T, the equation governing N(t) is 

dN (t) 
= Qo − λN (t) (12.8)

dt 

Because we have an external source term, the equation is seen to be inhomogeneous.  The 

solution to (12.8) with the initial condition that there is no radioisotope prior to 

production, N(t = 0) = 0, is 

N (t) = 
Q 
λ 

o (1− e−λt ), t < T (12.9) 

For t > T, the governing equation is (12.8) without the source term.  The solution is 

N (t) = 
Qo (1− e−λT )e−λ (t−T ) (12.10)
λ

A sketch of the solutions (12.9) and (12.10) is shown in Fig. 12.2.  One sees a build up of 

N(t) during production which approaches the asymptotic value of Qo / λ , and after 

production is stopped N(t) undergoes an exponential decay, so that if λT  >>1, 
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N (t) ≈ 
Qo e−λ (t−T ) (12.11)
λ

Fig. 12.2. Time variation of number of radioisotope atoms produced at a constant rate 

Qo for a time interval of T after which the system is left to decay.  

Radioisotope Production in Series Decay 

Radioisotopes also are produced as the product(s) of a series of sequential decays.  

Consider the case of a three-member chain, 

λ1 λ2 

N1 → N 2 → N3  (stable) 

where λ1  and λ2  are the decay constants of the parent (N1) and the daughter (N2) 

respectively. The governing equations are 

dN1 (t) 
= −λ1 N1 (t) (12.12)

dt 

dN 2 (t) 
= λ1 N1 (t) − λ2 N 2 (t) (12.13)

dt 

dN3 (t) 
= λ2 N 2 (t) (12.14)

dt 
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For the initial conditions we assume there are N10 nuclides of species 1 and no nuclides of 

species 2 and 3.  The solutions to (12.12) – (12.14) then become 

N1 (t) = N10e−λ1t (12.15) 

1 − 2N 2 (t) = N10 λ 
λ
− λ 

(e λ1t − e−λ t ) (12.16) 
2 1 

2 

N3 (t) = N10 
λ1λ2 

⎜⎜
⎛1− e−λ1t 

− 
1− e−λ t 

⎟⎟
⎞ 

(12.17)
λ2 − λ1 ⎝ λ1 λ2 ⎠ 

Eqs.(12.15) through (12.17) are known as the Bateman equations.  One can use them to 

analyze situations when the decay constants λ1  and λ2 take on different relative values. 

We consider two such scenarios, the case where the parent is short-lived, λ1  >> λ2 , and 

the opposite case where the parent is long- lived, λ2 >> λ1 . 

One should notice from (12.12) – (12.14) that the sum of these three differential 

equations is zero.  This means that N1(t) + N2(t) + N3(t) = constant for any t.  We also 

know from our initial conditions that this constant must be N10. One can use this 

information to find N3(t) given N1(t) and N2(t), or use this as a check that the solutions 

given by (12.15) – (12.17) are indeed correct. 

Series Decay with Short-Lived Parent 

In this case one expects the parent to decay quickly and the daughter to build up 

quickly. The daughter then decays more slowly which means that the grand daughter 

will build up slowly, eventually approaching the initial number of the parent.  Fig. 12.3 

shows schematically the behavior of the three isotopes.  The initial values of N2(t) and 

N3(t) can be readily deduced from an examination of  (12.16) and (12.17). 
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Fig. 12.3.  Time variation of a three-member decay chain for the case λ1  >> λ2 . 

Series Decay with Long-Lived Parent

 When λ1  << λ2 , we expect the parent to decay slowly so the daughter and grand 

daughter will build up slowly. Since the daughter decays quickly the long-time behavior 

of the daughter follows that of the parent. Fig. 12.4 shows the general behavior 

Fig. 12.4.  Time variation of a three-member chain with a long-lived parent. 

(admittedly the N2 behavior is not sketched accurately).  In this case we find 

N 2 (t) ≈ N10 
λ1 e−λt (12.18)
λ2 
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or  λ2 N 2 (t) ≈ λ1 N1 (t) (12.19) 

The condition of approximately equal activities is called secular equilibrium. 

Generalizing this to an arbitrary chain, we can say for the series 

N1 → N 2 → N3 → ...  

if  λ2 >> λ1 , λ3 >> λ1 , … 

then λ1 N1 ≈ λ2 N 2 ≈ λ3 N3 ≈ ... (12.20) 

This condition can be used to estimate the half life of a very long-lived radioisotope.  An 

example is U238 whose half life is so long that it is difficult to determine by directly 

measuring its decay.  However, it is known that U238 →  Th234 →  … →  Ra226 →  …, 

and in uranium mineral the ratio of N(U238)/N(Ra226) = 2.8 x 106 has been measured, with 

t1/2(Ra226) = 1620 yr. Using these data we can write 

238 226N (U 
238

) 
=

N (Ra 
226

) or t1/ 2 (U 238 ) = 2.8 x 106 x 1620 = 4.5 x 109 yr.
t1/ 2 (U ) t1/ 2 (Ra ) 

In so doing we assume that all the intermediate decay constants are larger than that of 

U238. It turns out that this is indeed true, and that the above estimate is a good result.  For 

an extensive treatment of radioactive series decay, the student should consult Evans. 
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