
Chapter 6 

Collisions of Charged Particles 

The interactions of a moving charged particle with any surrounding matter are governed 
by the properties of collisions. We will usually call the incident particle the "projectile" 
and the components of the matter with which it is interacting the "target-particles" or just 
the "targets". The simplest situation one might imagine is that  the matter consisted of free 
charged particles, electrons and nuclei. This is exactly the situation that applies if the matter 
with which the particle is interacting is a plasma. It might be thought that in this case, 
the mutual interaction of the target-particles themselves could be ignored, and the collisions 
treated as if they were all simple two-body collisions. This is not quite true because of the 
long-range nature of the electromagnetic force, as we shall see, but it is possible, nevertheless, 
to treat the collisions as two-body, but correct for the influence of the other target particles 
in this process. 

In interactions with the atoms of solids, liquids or (neutral) gases, the fact that  the target 
electrons are bound to the nuclei of their atom is obviously, in the end, important to the 
interaction processes. The atoms themselves can usually be treated ignoring the interac- 
tions between them, a t  least for projectiles with substantial kinetic energy. The simplest 
approximate analysis goes further, and starts from the highly simplified view that the elec- 
trons can be treated initially zgnorzng the force binding them to atoms. The corrections 
to this approach are naturally substantial, and the treatment cannot always yield accurate 
results. Nevertheless it represents a kind of baseline that more accurate calculations and 
measurements can be compared with. 

The nuclei of the target are important in collisions with plasmas. However, in interactions 
with neutral atoms, direct electromagnetic interaction with the nucleus requires the projectile 
to penetrate the shielding of the orbiting electrons in the atom. Only particles with very 
high momentum can do that.  Therefore the electrons of the target are usually the most 
important to consider, and tend to dominate the energy loss. 

The topic of atomic collisions is an immense and complex one, in which quantum me- 
chanics naturally plays a crucial role. It would take us far beyond the present intention to 
attempt a proper introduction to this topic. Two simplifying factors enable us, nevertheless, 
to develop this aspect of electromagnetic interactions in enough detail for many practical 
purposes. The first factor is that  the details of atomic structure become far less influential 
in collisions at energies much higher than the binding energies of atoms (which is about ten 



electron volts or so). The second is that even when quantum effects are important in the 
collisions, approximate formulas with wide applicability, but ignoring the details of particu- 
lar atomic species, can be obtained by semi-classical arguments. The quantum corrections 
are then applied in a way that seems somewhat ad hoe, but often represents the way the 
earliest calculations were done, and gives simple analytic formulas. 

6.1 Elastic Collisions 

6.1.1 Reference Frames and Collision Angles 

Consider an idealized non-relativistic collision of two interacting particles, subscripts 1 and 
2, with positions r l , ~and velocities v l , ~ ,which are not acted on by any forces other than 
their mutual interactions and which experience no changes in internal energy, so the collision 
is elastic. Their total (combined) momentum, mlvl+m2v2,is constant, so that  their center- 
of-mass, 

R E  m l r l +  m2r2 
(6.1)

m l +  m2 
moves at a constant velocity, the center-of-mass velocity: 

It is helpful also to introduce the notation 

for what is called the "reduced mass". In terms of this quantity and the relative position 
vector r E r l  - r2 , the positions of the particles can be written: 

and their velocities: 
m, m,

v 1 = V + v  v 2 = V v  , (6.5)
ml m2 

where v E r is the relative velocity. 
Some of our calculations need to be done in the center-of-mass frame of reference, in which 

R is stationary. Others need t o  be done in the lab frame or other frames of reference, for 
example in which one or other of the particles is initially stationary. The angles of vectors 
in these frames are important. The directions of all position vectors and of all velocity 
differences are the same in all inertial frames. However the directions of velocities are not 
the same in different frames. 

For example, consider a collision illustrated in Fig 6.1. Collisions can be considered in 
a single plane-of-scattering which is perpendicular to the angular momentum of the system, 
itself a constant. The angle of scattering, which we denote x is just the angle between the 
initial direction of the relative velocity v and its final direction, v'. This angle is different 



in different reference frames. Call the angle in the center-of-mass frame x,. By conservation 
of energy, the final relative velocity v' has absolute magnitude equal to that of the initial 
relative velocity, vo. So the final velocity can be written in component form, in the center of 
mass frame, as 

1v =vo(cosxC,sin x,) , (6.6) 

where we have chosen the initial relative velocity direction for the x-axis 
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Figure 6.1: Collisions in center-of-mass and laboratory frames 

Substituting into eq(6.5) we find the final velocities in the lab frame to be given by 

vlI = vmr I + V = cos X ,  + V,vm, o  sin X ,  ,
ml ml ) 

v' - --
m, m, 
m2 

vo cos xC+ V,v 
m2 

o  sin xC) .2 -

The angle in the lab frame of the final velocity of particle 1 to its initial velocity (which is 
in the x-direction) , x1 say, is then just given by the ratio of the components of the final 



-v0 COS XC+ v 
cot X1 = mi - cot xc+-V m l  

csc X, (6.9)
?VOnu sin xC vo mr 

For the specific case when particle 2 is a statzonary target, with initial lab-frame velocity 
zero, the center-of-mass velocity is V = mlvo/(ml +m2) = (mr/m2)v0 and so 

cot XI = cot X, + -ml 
csc X, (6.10)

m2 

We often want to  know how much energy or momentum is transferred from an incident 
projectile, (particle 1) to an initially stationary target (particle 2). Clearly from eq(6.8) 
we can obtain these quantities in terms of the scattering angle x,. So, the change in the 
x-momentum of particle 1 is simply 

cos xC+ Vi -mvo = m,vo Icos X, + -
(6.11) 

and the final recoil energy of particle 2 (which is the energy lost by particle 1) is 

Q 

1 
m z  [2 i2]
m, 

cOs*,+ v +
i2 

0  sin x,Ivm2 :;
 = 

1 m, 
2 ( o 

2 

[ (  cos *, + 1)' + sin2xCj = 

1 4  2 1 4 2 2 x c
- v 0 2 ( 1  - = 2 m2 . (6.12)2 m2 cos x,) v 0 4sin (-)2 

Notice that the maximum possible energy transfer, which occurs when X, = 18O0, is 

All of these relations are completely independent of the nature of the interaction between 
the particles, since we have invoked only conservation of momentum and energy. 

Impact Parameter and Cross-section 

By definition, the cross-section, 0, for any specified collision process, when a particle is 
passing though a density n2 of targets, is that quantity which makes the number of such 
collisions per unit path length equal to n20.1 Sometimes a continuum of types of collision is 
under consideration. For example we can consider collisions giving rise to different scattering 
angles (x) to  be distinct. In that case, we speak in terms of differential cross-sections, 
and define the differential cross-section $ (for example) as being that quantity such that 
the number of collisions within an angle element dx per unit path length is 

dff 
r(.zzdx 

~ ~ / L  

'An alternative definition can be invoked, equivalent to this first definition but in the frame of reference 
in which the single particle (1) is stationary and the particles of density ns  are moving. 



Sometimes other authors use different notation for the differential cross-section, for example 
~ ( x ) .However, our notation, with which we are familiar from calculus, is highly suggestive 
and the cross-sections obey natural rules for differentials implied by the notation. 

For classical collisions, the impact parameter, b, shown in Fig 6.1, is a convenient 
parameter by which to characterize the collision. It is the distance of closest approach 
that would occur for the colliding particles if they just followed their initial straight-line 
trajectories. Alternatively, the impact parameter can be considered to be a measure of the 
angular momentum of the system in the center-of-mass frame, which is m,vob. 

-
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Figure 6.2: Differential volume for counting the number of collisions in length d! with impact 
parameter b. 

The differential cross-section with respect to the impact parameter is defined purely by 
geometry. As illustrated in Fig 6.2 ,  one can think of the projectile (particle 1) as dragging 
along with itself an anulus of radius b and thickness db as it moves along a distance d! of 
its path length. This anulus drags out a volume d!27rbdb, and the number of targets that 
are in this volume, and hence have been encountered in the impact parameter element db 
at b in this path-length is n2d!27rbdb. Consequently, from our definition, the differential 
cross-section for scattering at impact parameter b is 

Notice that the integral of this quantity over all impact parameters (i.e. 0 < b < oo) will 
certainly diverge, because it considers the projectile to be colliding with all the target parti- 
cles it passes, no matter how far away they are. Therefore the total number of "collisions" of 
all possible types, per unit length in an infinite target medium is infinite. This mathemat- 
ical singularity in the "total cross-section" points out the need to define more closely what 
constitutes a collision, and alerts us to the fact that for collisions governed by interactions 
of infinite range, such as the forces between charged particles, we shall have to define our 
collisions in such a way as to account for some effective termination of the impact-parameter 
integration.' This termination, which is often expressed approximately as a cut off of the 

'It also shows the fundamental incoherence of the notion of the total number of collisions per unit length 
and concepts that depend on it such as the average change in some parameter per collision,which some 
authors unfortunately employ 



- -- 

impact parameter integration at a maximum b,,, will be governed by consideration of the 
particle parameter whose change due to collisions we are trying t o  calculate. For example, 
the momentum or energy change in the collision may become negligible for b > b,,. 

There is usually a one-to-one relationship between the impact parameter and the angle of 
scattering and hence with the energy transfer, Q, given by eq(6.12). Consequently the differ- 
ential cross-section with respect to energy transfer, scattering angle and impact parameter 
are all related thus: 

do  do dxC do db dx, 

d Q = d x . d Q = i l b ~ ~ ~  (6.15) 
If we are concerned with a quantity such as the energy of the projectile, which is changing 

because of collisions, and the change in each collision is an amount Q(b) that depends on 
the impact parameter, then the total rate of change per unit length due to all possible types 
of collisions is obtained as 

n2/ Qdo =Q/ Q 2nbdb (6.16) 

6.1.2 Classical Coulomb Collisions 

The exact relationship between the impact parameter, b, and the scattering angle is de- 
termined by the force field existing between the colliding particles. For electromagnetic 
interactions of charged particles, the fundamental force is the Coulomb interaction between 
the forces, an inverse square law. As Isaac Newton showed, the orbit of a particle moving 
under an inverse square law force is a conic section; that is, an ellipse for closed orbits or a 
hyperbola for the open orbits relevant to collisions. 

Elementary analysis shows that the resulting scattering angle X, for a collision with 
impact parameter b is given by 

cot (?)- = -
b 

, (6.17) 
b90 

where, for particles of charge ql and q2 and initial collision velocity vo the quantity bgO is 
given by 

q1q2 1bgo = --
4nto m,vo 2 . (6.18) 

Clearly from eq(6.17), bgOis the impact parameter at which the scattering angle in the center 
of mass frame is 90". Trignometric identities allow us t o  deduce immediately from eq(6.17) 
that 

1 db b90 
~ i n ' ( ~ ~ / 2 )  and -= - c ~ c ~ ( ~ , / 2 ). (6.19)= 

1+ (b/bgo)' dxC 2 
So that  the energy transfer in a collision (see eq(6.12)) is 

and the rate of transfer of energy per unit length for a particle of energy K = ~ m l v ~colliding 
with stationary targets is 



where the upper limit of the b-integration, b,,, which prevents the integral diverging, will 
be discussed in a moment. One way to think of this equation is t o  regard the quantity 
7rbg0& ln [ l+  (b,,/bg0)2] as an effective collision cross-section for total energy loss. When 
multiplied by the density n2 of targets it gives the inverse scale-length for energy loss, 
d in  Kid!. 

Figure 6.3: Scattering angle and impact parameter shown schematically for different 
Coulomb collisions. 

The integral over impact parameters diverges if we extend it to infinite b. This is because 
the inverse square law has essentially infinite range. As a result, the dominant contribution 
to the energy loss cross-section comes from distant collisions, in which b >> bgO, and hence 
the scattering angle is small. Several different physical effects can enter a t  large impact 
parameters to change the effective force-law and prevent the divergence. We will treat these 
effects separately in later sections, but in almost all cases, the exact value of the upper limit is 
not a very strong quantitative effect on the cross-section because b,,/bgo is large and appears 
inside a logarithmic term that  may be written approximately ln(bm/bgO), which therefore 
varies very slowly with bm. Many treatments adopt a small-angle approximation for the 
differential cross-section earlier in the derivation, leading to an expression Q K l / b 2  and an 
integral that  diverges both at small b and at large b. Such treatments then need to invoke a 
b,, cut-off of the integration, justifying it on the basis of a breakdown of the approximation, 
and naturally adopt bgO as that cut-off in this classical case. The resulting expression is 
then essentially identical t o  ours, which was obtained more rigorously. There are, in some 
circumstances, important physical effects that  require us to cut-off the integration a t  small 
b even before bgO is reached. In those cases we simply replace the term ln[l + (bm/bg0)2] 
with 2 ln(bm/b,,). 

6.2 Inelastic Collisions 

The effects that give rise to the cut-off of the Coulomb logarithm are primarily associated 
with the presence of other particles and forces in the system. If the target particles experience 
the force-field of another nearby particle, such as will be the case if the targets are electrons 
bound to the nuclei t o  form the atoms of a target material, then the dynamics of their binding 
gives rise to a cut-off. One way to think of this effect is to regard the electrons as behaving 
as if they were free only in collisions in which the energy transfer from the projectile is larger 
than their binding energy in the atom. Distant, small angle, collisions transfer less energy. 



A cut-off b,, should be applied at that impact parameter where the energy transfer is equal 
to approximately the binding energy. 

Alternatively, and more physically, one can regard these collisions as being with a com- 
posite target system, the atom, in which there is a transfer of energy inelastically t o  the 
system, the energy being partially taken up in the ionization or excitation energy of the 
atom. Clearly, a fully rigorous calculation of such collisions requires the quantum structure 
of the atom to be considered, and so is intrinsically quantum-mechanical. Nevertheless, semi- 
classical calculations, taking quantum effects into account in a somewhat ad hoe manner, give 
substantial insight into the governing principles and, in fact, are able to give quantitatively 
correct forms for the cross-sections and energy loss. 

xcited Electron 

Figure 6.4: Collisions with an atomic system can excite or eject electrons from the atom 

6.2.1 Energy transfer to an oscillating particle 

An approach to the problem of collisions with bound particles that can be treated classically, 
and becomes the basis for a quantum description, is to approximate the system as a charge 
bound in a simple harmonic potential well. Because we are mostly interested in large impact 
parameters, we regard the electric field of the projectile as uniform at the atom and then 
ask the question, in the encounter of the projectile with this oscillating electron, how much 
energy does the oscillator gain as a result of the fluctuating electric field of the passing 
projectile. 

So consider a simple oscillating particle in a uniform electric field, E( t ) .  Its position x is 
governed by the equation 

42 +w2, = E ( t )  (6.22) 
m 

We solve this equation in the time range (tl ,  t2), with some assumed initial condition a t  t l  
so as to determine the energy gained by the particle at time t2. This solution is readily 
obtained using what is called the "one-sided Green's function" as follows. The solutions to 
the homogeneous problem (the equation with zero right hand side) are sinwt and coswt. 
The Green's function is constructed as 

H( t , T) = (sin wt cos WT - cos wt s i n w ~ ) / w  



and the general solution is then 

4x(t) =Asinwt + B coswt +i H ( ~ , T ) E ( T ) ~ T  (6.24), 
m 

t 1 

where A and B are constants determined by the initial conditions. Actually, we don't need 
to solve for A and B because when we calculate the energy of the oscillator, averaged over an 
oscillator period, A and B make exactly the same contribution at the end of the integration 
as they did at the beginning and any cross-terms between them and H average to zero. [The 
point about the cross terms is not really obvious, but in the interests of time we won't prove 
it.] Therefore, the gain in energy is determined just by the integral term and we can simply 
set A =B = 0.Then at time t2 the solution may be written 

wm 
x ( t 2 )  = cos WTE(T)~Tcos wt2 .sinwt2 - s i n w ~ E ( ~ ) d ~  (6.25)7
4 

t 1 t 1 

When this expression is differentiated, the terms arising from the differentials of the limits 
cancel and we get 

wm .
x ( t 2 )  = cos WTE(T)~T sin WTE(T)~Tw cos wt2 + w sinwt2 .7 7
4 (6.26)

t l  t l  

So the total (kinetic plus potential) energy in the oscillator can then rapidly be evaluated as 

with the Fourier transform of the electric field written 

E(w) = { ~ X ~ ( ~ W T ) E ( T ) ~ T  (6.28). 

We did this integration over a finite time, which avoids some mathematical difficulties, 
but we can now readily let t l  i o o  and t2 i oo and obtain the full domain Fourier 
integral. We have obtained the important general result that the energy transferred to a 
harmonic oscillator is proportional to the Fourier transform of the electric field evaluated at 
the resonant frequency of the oscillator, eq(6.27). 

6.2.2 Straight-Line Collision 

We are interested mostly in small-angle collisions, because, as we previously noted, they 
dominate the behavior, especially a t  the cut-off, b,,. We approximate the orbit of the 
projectile in this case as a straight-line. Then, as illustrated in Fig 6.5, the electric field at 



Straight-Line Collision 

Figure 6.5: The approximation of a straight orbit gives a simple expression for the electric 
field as a function of time. 

the atom is just that due to a charge moving past at an impact parameter b and a constant 
speed. For a non-relativistic speed v the components of the electric field as a function of 
time are then 

-41 vt -41 b
E,(t) = ---- and E, (t) = ----

47rto (b2 +v2t2)3/2 47rto (b2 +v2t2)3/2 

the relativistic forms are qualitatively similar, and were calculated previously in section 4.2, 
see eq(4.40) 

-41 yvt -41 ybE,(t) = --- and E,(t) = ---
4 r t o  (b2 + ~ ~ v ~ t ~ ) ~ / ~  '4 r t o  (b2 + ~ ~ v ~ t ~ ) ~ / ~  

where y is the relativistic factor (1 - v2/~2)-1/2. The field components are plotted as a 
function of time in Fig 6.6. Clearly, by inspection of Fig 6.6, and eq(6.28) there will be a 
qualitative change in the behaviour of the Fourier transform of E( t )  and hence the energy 
transfer for wblyv >> 1 compared with wblyv << 1. The characteristic time duration of the 
collision is - blyv. If this is much shorter than the characteristic oscillator time, l/w, we 
can take w -- 0 and obtain by elementary integration 

2 4 1E, (w) = ---- . (6.31)
471tobU 

Because E,(t) is antisymmetric, E,(w) = 0 in this small impact parameter limit. In the 
opposite limit, that is for collisions in which b is so large that wblyv >> 1, E(w) will be 
small because in eq(6.28) there are many oscillations of the factor exp(-iwt) within the 
smooth variation of E( t ) .  Thus we see that in collisions with a simple harmonic oscillator of 
frequency w, there is a natural cut-off to the energy transfer at a maximum impact parameter 

Substituting eq(6.31) into eq(6.27), and restoring our notation of subscript 2 for the 
target and subscript 0 for the incident velocity, we obtain the energy transfer in a straight- 



Figure 6.6: The electric field components in a straight-line collision. 

Notice that this is essentially the same expression as in eq(6.20) for the energy transfer t o  a 
free electron, except that  the lower impact-parameter cut-off is not present here because of 
the assumption of a straight-line orbit for the projectile, which is unjustified a t  small impact 
parameters. The rate of energy loss is then obtained, as before, by integration over impact 
parameters from the minimum t o  the maximum corresponding to the limits of applicability 
of eq(6.31) 

6.2.3 Classical Energy Loss Rate Formula 

One final consideration is needed before we have an energy loss formula useful for practical 
purposes. We have to have some way of applying the idealized harmonic oscillator calculation 
to actual atoms. An atom in general has a number 2,say, of electrons bound to the nucleus. 
Each electron may act as a target oscillator for energy transfer, and actually each electron 
may act as one of an infinite set of oscillators, corresponding t o  each of its possible quantum 
transitions. Energy transitions of magnitude &, correspond to oscillators of frequency wi = 

&,/7i, of course. To the i th  transition may be assigned an oscillator strength, f,, defined as the 
ratio of the actual rate of energy absorption by that transition to that of a corresponding 
harmonic oscillator. The semi-classical argument is then that each electron spends some 
fraction of its time behaving as if it were each of the possible oscillators, and consequently 
C f, = 2.There is a more rigorous theorem in quantum physics called the (Thomas-Reiche- 
Kuhn) f-sum rule which states that the sum of all possible transition oscillator strengths 
from a specific level is equal to the number of electrons in the level. If this were applied 
blindly t o  all the electrons of the atom, it would give the same equation. 



To obtain the total energy loss rate arising from collisions with a density of atoms n,, 
whose atomic number is Z,we add up the contributions from all the possible transitions, 
weighted by the oscillator strength of that transition. Thus we obtain for the logarithmic 
term: 

where we have defined a kind of average oscillator frequency ( w )  by the equation 

The total classical energy loss rate is then 

where we have substituted electron charge and mass, and for brevity denoted the argument 
of the logarithm by 

A=- YVo . (6.38) 
(w)bgo 

Actually, it turns out t o  be possible to evaluate the Fourier transforms of the relativistic 
fields in eq(6.30) in closed form and carry through the integration of the modified Bessel 
functions thus obtained [ref6.2.3]. When that is done, two very small corrections to our 
formula appear. The argument of the logarithm is multiplied by the factor 1.123 and an 
additional relativistic term is added, equivalent to the replacement 

Neither of these corrections is quantitatively significant. The result was first obtained by 
Bohr in 1913, prior to the development of quantum mechanics. It  is hardly complete as it 
stands, since the average ( w ) has to be estimated. However, because ( w ) appears only in the 
logarithm, even a rough estimate, for example setting & ( w )equal to the atom's ionization 
potential, will give a useful quantitative formula for the energy loss. 

6.2.4 Quantum effects on close collisions 

For the classical minimum impact parameter bgOto be applicable requires that the particles 
of the collision behave as point particles down to that impact parameter. However, quan- 
tum mechanics teaches us that  particles do not behave like perfect points. The Heizenberg 
uncertainty principle states that the particle is localized only within a position uncertainty 
Az if its momentum uncertainty is A p  such that A z A p  -- 6.Alternatively one can say that 
a particle with momentum p = y m v  behaves like a wave with wave-vector k = p/&.  Or 
again, one can say that  orbital angular momentum is quantized in indivisible units of 15.All 
of these are ways of indicating that in collisions the effective position of a particle is spread 



out over a distance of order f i lp.  Consequently, quantum effects prevent us from extending 
the classical integration over impact parameters below a value of 

The classical bgOlower impact parameter cut-off will be applicable only if 

where a is the fine structure constant, approximately 11137, This criterion is a requirement 
that the collision velocity with electron targets should be less than Z1c/137. 

In practice this means that electrons with energy greater than 1.9 keV, protons with 
energy greater than 3.5 MeV, or alpha particles with energy greater than 55 MeV will not 
be appropriately treated using the classical lower impact parameter cut off. Instead, an 
approximation to the quantum-mechanical result may be obtained by simply cutting off the 
impact parameter integration a t  b, rather than bgO. If we choose3 b, = f i /2ymev ,  then in 
collisions of heavy particles with atoms, for which m, =me,  

This value is then consistent with that obtained for the relativistic case using a quantum 
scattering treatment and the first Born approximation, by Bethe (1930),  

where again the final term, v; /c2,  which we have not derived, is at most a small correction. 
If the projectile is an electron or positron, then the quantum cut-off must be estimated 

in the center-of-mass frame, and the expression becomes 

6.2.5 Values of the Stopping Power 

We have so far left open the question of what value to take for f i (w) .  Bloch (1933) showed 
from an analysis of the Thomas-Fermi model of the electron charge distribution in an atom 
that one would expect that f i(w) K Z .  In recognition of the work of Bethe and Bloch, eq 
6.43 is often referred to as the Bethe-Bloch formula. The formula is often written as 

" 

3The factor of 2 here is our only real artifice. It gives the argument of the logarithm equal to that obtained 
by a full quantum calculation 



with the quantity B, called the "atomic stopping number", corresponding to the factor 

Also BIZ is then called the "stopping power" per (atomic) electron, recognizing that an atom 
has Z electrons. The stopping power is determined from experiments, and the appropriate 
value t o  use for 5 ( w ) is determined from those measurements 

A complication that we have not discussed arises because our treatment has assumed that 
the orbital velocity of the electrons in the atom can be ignored relative to the velocity of the 
incident particle. This is not the case when dealing with the inner shell electrons of high-Z 
atoms or very low incident-energy projectiles. Then a reduction in the stopping number 
occurs because (for example) the (innermost) K-shell electrons are ineffective in removing 
the projectile's energy. This effect is numerically compensated by substracting a correction 

In this form, the value of 5 ( w )  is empirically determined to be about 11.5 x Z eV, and CK 
is a function of the quantity E = (c2/v,2)(Z- 0.3)2a2 (which represents the squared ratio of 
the K-shell velocity to the projectile velocity). A simple approximate form for CK is 

correct t o  within 10% from E = 0 to E = 2. It tends to zero at high projectile energy and 
peaks at about unity at low velocity, where E - 1. These and many other details have been 
reviewed by Evans (1955). 

6 . 2 6  Effects of surrounding particles on distant collisions 

Let us return now to our primitive energy loss rate calculation, eq 6.34 which may be 
considered in the form 

47r 
(6.47)

d! 

In the preceding sections we have been discussing appropriate choices of b,, based either 
on the classical effects of large scattering angles (giving bgO) or on quantum-mechanical 
effects of the de Broglie wave-length of the projectileltarget combination. We also discussed 
the appropriate b,, based on the effects of the binding of electron targets to their nuclei. 
However, another effect can sometimes be more important than the atomic binding structure 
in determining bm, namely the influence of surrounding particles. 

We have tacitly assumed so far that the interaction of the projectile and any specific target 
can be treated zgnorzng the effects of the other targets in the vicinity. We have calculated the 
projectileltarget interaction in isolation and then presumed that  we can add up the effects of 
all the different targets via a simple impact-parameter integration. This may not be the case. 
For example, it definitely is not the case when the electrons of the target are unbound; or in 



other words for a plasma target. In that case there is no intrinsic cut-off t o  the the collision 
integral arising from the oscillator effects introduced in section 6.2.1 and the effect of the 
nearby particles essentially always determines bm. Even in collisions with atomic matter, 
especially for relativistic electrons, the effect of nearby particles can significantly lower the 
energy transfer rate. In the atomic collision context the corrections are often referred to as 
the "density effect" because they are most significant for high-density matter. 

It  is still the case that transfer of energy to the target arises from the electric field 
produced by the incident projectile. However, what we need to do is to account for the 
influence of the other particles in the target medium on the electric field that the projectile 
produces at a specific target. Expressed in this way, it is immediately clear that what we 
need is to take account of the dzelectrzc propertzes of the target medium. The individual 
particles of the medium respond t o  the influence of charge (the projectile in this case) so as 
to alter the electric field in the medium from what it would otherwise have been. This is 
exactly what we mean by the dielectric response of the medium. 

Of course, though, it is not the steady-state dielectric response that  we require but the 
response at the high frequencies of interest in the collisions. Moreover, when we think 
about a target medium consisting of a density of idealized oscillators, as we did before, it 
is the properties of those oscillators themselves that determines the dielectric response at 
frequencies close to their resonant frequencies. Thus the dielectric response and the energy- 
loss collisional response are not two separate properties of the medium, they are intimately 
connected. 

The idealized oscillator model can be generalized to discuss a medium with any relative 
dielectric permittivity t(w) having a resonant form (t  - 1 K (w -w,)-l), and an expression 
for the rate of loss of energy of an incident projectile to this resonance can then be obtained. 
Fermi (1940) first gave the following formula, which would take us too long to rederive, for 
the energy loss attributable to collisions with impact parameter greater than a as 

where R denotes real part, 0 = vole, K1 and K2 are modified Bessel functions, and their 
argument is s such that  

a2w2 
s2= -[I -P2t(w)] (6.49) 

v," 

It can be shown, but not trivially, [Jackson] that this dKld! reduces to the the Bohr expres- 
sion (eq 6.39) if the P2t(w) term in s is neglected. 

Rather than pursue the topic for the atomic case, let us consider a simple argument for 
a plasma. The dielectric constant for a (magnetic field-free) plasma at high frequency is 

where 



is called the plasma frequency. Therefore when the field frequency of interest is less than wp 
the dielectric constant is negative and wave electric fields no longer propagate in the medium; 
instead they decay exponentially with distance from their source. In collisions, as we have 
seen before, the frequency of the interaction electric field is approximately vo/b. Therefore, 
for impact parameter, b, greater than vo/wp we would expect that the effectiveness of the 
collisions would fall off because of the dielectric effects. Applying this value for b,, we 
obtain an energy loss rate expression corresponding to eq 6.37 as 

but with A given approximately by 

What we have done, in effect then, is t o  replace the value b,, = yvo/(w) in the definition 
of A, eq (6.38) with 

vo
bm, = - . (6.53) 

The factor by which the logarithmic argument A of the Bethe-Bloch formula is multiplied 
is therefore ywp/(w). But the density effect can only lower the absorption rate so we should 
more properly have used b,, = min(vo/wp, yvo/(w)). The electrons behave as if they are 
free when w > wij - (w). Hence plasma-like, i.e. free-electron, behaviour occurs only when 
wp > (w), which is when the plasma expression for b,, applies, because it is the smaller. 

A rough estimate of the ratio of wp/(w) may be obtained by taking the density of atoms 
in a solid t o  be about lo3' m-3, and the electron density to be 2 times that.  Then 

For medium weight solid elements, fi(w) - 112 eV so we expect the plasma effect to be 
slightly noticeable since on this basis wp/(w) > 1. The question is a little more complicated 
than this, though because not all the electrons are going to behave as if free so we have 
somewhat over estimated the density of the electrons that behave as if free. In extreme 
relativistic cases, y >> 1 the plasma (density) effect will always dominate. 

6.3 Angular Scattering from Nuclei 

Up t o  this point we have been discussing the energy loss of the projectile and have focussed 
on its interactions with electrons. This focus on electron targets is entirely appropriate for 
calculating energy loss because, as illustrated by eq (6.21) or (6.34) the rate of energy loss 
is, classically, inversely proportional to the mass of the target particle4. Therefore the loss 
of energy is in fact predominantly to the light particles, electrons, and this predominance 

4This proportionality can be traced to the inverse dependence of the energy transfer in a collision on m s ,  
but only because cancellation of reduced mass factors occurs in the product Qb&. 



depends only on the elementary dynamics of collisions. However, in addition to losing energy, 
the projectile also generally experiences angular scattering in the direction of its velocity. If 
this angular scattering is our concern, as it was in Rutherford's original experiments on the 
angular scattering of alpha particles which established that the nucleus is far smaller than 
the atom, then collisions with the heavy particles in our scattering medium, the nuclei of 
the atoms or the ions of a plasma, are important. This process, illustrated in Figure 6.7, 
is often called "elastic scattering", although the expression may be considered somewhat 
misleading in that some energy is lost by the projectile in the collision, and the process is 
no more elastic than a collision with a free electron, for instance. 

k@\Electron Cloud 

Figure 6.7: Angular scattering from nuclei occurs only if the impact parameter is less than 
the size of the electron cloud. 

Qualitatively, the relative importance of energy loss and angular scattering can be grasped 
by imagining the difference between a ping-pong ball colliding with a random arrangement of 
snooker balls, or a snooker ball colliding with a random arrangement of ping-pong balls. In 
the first case, the light projectile will bounce around changing its direction of motion many 
times before losing its energy; while in the second case, the heavy projectile will plough 
through the light targets, losing energy faster than its direction is deflected. 

The angular scattering of a particle in a classical coulomb collision is governed by the 
Rutherford formula for the differential scattering cross-section per unit solid angle at a 
scattering angle in the center of muss frame, x,, 

This formula may readily be derived from the considerations in section 6.1.1. It shows that 
the predominant scattering is through small angles. Those small angles arise from large 
impact parameters. There are some collisions, of course, which arise from small impact 
parameters, close to bgO,that give rise to large scattering angles, but these are far fewer in 
number than the small-angle collisions; so by the time the probability of scattering by a large 
angle is significant, multiple scatterings by small angles will have caused a kind of diffusion 
of the direction of the particles in perpendicular velocity. Figure 6.8 illustrates an idealized 
situation, in which the projectile loss of energy is taken as zero, so its velocity vector has 



constant magnitude and moves on a sphere. Taking the initial direction to be along the 
z-axis, each small-angle collision causes a random step t o  be taken in the (v,,v,) plane. 
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Figure 6.8: Multiple small-angle Coulomb collisions cause a diffusive "random walk" of the 
angle of the projectile velocity, or equivalently its perpendicular components. 

Setting the large-angle collisions aside for a moment, we can treat the total angular 
scattering experienced by a projectile passing through a finite length of scattering path as 
the result of many small scatterings each of which has random direction and magnitude, 
governed by the fact that cot(x,/2) = b/bgo (eq 6.17). Although we cannot calculate for any 
individual projectile what its final angle will be, we can treat the whole process statistically, 
by presuming there to be many small-angle scatterings. Actually, this calculation requires 
not the Rutherford differential cross-section per unit solid-angle a,but the differential cross- 
section per unit scattering angle x,, 

which result is obtained immediately from our previous formulae. 
The mean scattering angle experienced by the projectiles is always zero, because there 

is equal probability of scattering at negative and positive angles; the scattering is isotropic 
in the (v,,v,) plane. The spread of scattering angles is quantified by the mean square 
scattering angle, which is non-zero and can be evaluated as follows. Succeeding collisions are 
statistically independent of each other. The final value of v, is given by the sum of the steps 
in v, a t  each of the individual collisions. (Similarly for v,.) We therefore make use of the 
basic statistical theorem that  the variance (which is the mean-square value for a zero-mean 
random variable) of the sum of independent random variables is the sum of the variances. 
We perform this sum by dividing the collisions into appropriate ranges of scattering angle 
dxC and azimuthal angle d4. The number of steps per unit path length belonging in these 
ranges is 

dff d 4
d N  = n2-dxC- (6.57)

dxC 2.rr 
and the change in v, that such collisions cause is 

6v, = (m,/ml)vo sin X, cos 4 . (6.58) 



Here, the quantity (m,/ml)vo is the initial (and final) speed of the incident particle (1) in 
the center-of-mass frame. Consequently, the total variance of v, per unit path length arising 
from all possible types of collisions is 

Performing the integration over azimuthal angle, , and substituting for the differential 
cross-section from eq (6.56) we get 

The final integral may be transformed using trignometric identities, becoming 

1/ sin2xccsc2(x./2) cot(xr/2)dxC =8 / - - sds (s = sinxc/2). (6.61) 
S 

The upper limit of the integral is s = 1. The singularity of this expression at zero lower 
limit of s shows again the now-familiar need for a cut-off of the collision integral at large 
impact-parameter (small X, or s). That cut-off and eq(6.19) make the value of the integral 
8(ln b,,/bgo , ) ,1 where b,, is the maximum impact parameter, and the term should be 
dropped since it is an artifact of the approximation implied by our use of eq(6.58). In the case 
of scattering by a plasma, the relevant impact-parameter cut-off is the length beyond which 
the collective interactions in the plasma screen out the electric field of individual nuclei. This 
distance is called the Debye length. When the scattering is from neutral atoms, the relevant 
cut-off length corresponds t o  the size of the atom, because for impact parameters larger than 
the atom the projectile sees the whole atom, neutral because of its electrons, rather than a 
bare nucleus. 

An identical treatment governs the y-component v,, and consequently the square of the 
total transverse velocity v l  =vz + vz evolves as 

with b,, approximately the size of the atom. For small angles 6' zz vl/v and so this equation 
can be written in terms of the angle of the scattered velocity direction: 

After a finite path length !, there is a distribution of v l  with variance 



which we assume is still small compared to vi so that small-angle approximations remain 
valid. Because this distribution arises from many independent scatterings, it becomes Gaus- 
sian (following the Central Limit theorem of statistics): 

with (vz)given by eq(6.64). We may alternatively regard the Gaussian shape as arising be- 
cause the particle distribution is experiencing a dzffuszon of velocity from an initial localized 
distribution (delta function) at v l  = 0.The solution of the diffusion equation in this case 
is this Gaussian. 

The maximum impact parameter (minimum x,) is determined by the shielding of the 
nucleus by its atomic electrons. Only for impact parameters small compared to the atom 
size, will the projectile see the bare nucleus because then it penetrates deep inside the electron 
shielding cloud. So b,,, is approximately the radius of the electron cloud surrounding the 
nucleus. This is generally taken to have a characteristic size approximately5 a o / ~ 1 / 3 .  

There is no mathematical compulsion to cut off the upper limit of the X, integral short 
of xC= T, that  is s = 1. However, if very energetic particles are involved, the value of bgO, 
which is inversely proportional t o  particle energy, becomes very small, eventually so small 
that it is smaller than the size of the nucleus. In that case, the large-angle scattering is 
affected by the structure of the nucleus itself and the upper limit is affected. Of course, 
this is the basis for experimental high-energy physics investigations of nuclear structure by 
electron scattering, but it requires electron energies greater than roughly Ze2/(4~tor , )  (-- Z 
MeV), where r, is the nuclear radius, of order 10-15 m, and Z its nuclear charge. 

6.4 Summary 

Collisions of charged particles are governed by the long range Coulomb force. The range of 
that force is limited by one of several different processes, depending on the exact physical 
situation to a maximum impact parameter b,,,. A minimum impact parameter for the pro- 
cess is also needed if approximations such as that the collision has a straight-line trajectory 
are made, or if quantum effects are important. Table 6.1 gives a summary of the situations 
discussed. 

'See M.Born "Atomic Physics" 8th ed., Blackie pl99, for a derivation of the Thomas-Fermi distribution 
of electron density around an atom based on the Pauli exclusion principle and a continuum approximation. 



1 1 Impact parameters Stopping Power (per e1ectron)I 

Collision Type bmn b,, In A =BIZ 

Classical Coulomb bgo ln Y"O7 ~ 0 1 ~  wbso 

Classical energy loss to atoms 1 123700 002 
l n l ( w ) h s o l - ~  


Quantum ion loss t o  atoms " filymv yvolw ln h ( ~ )  1 0;
7 


Corrected for inner shell effects ln 1-
 2 ~ 2 m e v ;  -
-cklz 

Quantum electron loss to atoms - filymv yvo/w 1 ( ) l 2*6 , ~ )  1 5 7w02 


Density effect (non-rel. plasma) bgo ~ O / W P  


Angular scattering from nucleus bgo - a o / ~ 1 / 3  


Table 6.1: Summary of collision calculations 

In collisions of the projectile particle 1, initial velocity vo,with particles of type 2, density 
n2,the rate of loss of kinetic energy K per unit pathlength !is given by 

and the angular scattering from nuclei by 

with the 1nA values indicated. See eqs(6.18) and (6.3) for other definitions 


