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Chapter 5 

Atomic Structure and Processes 

5.1 Elementary atomic structure 

Bohr Orbits correspond to principal quantum number n. 
Hydrogen atom energy levels 

En = 
R

n
y 

(5.1) 
2 

where the Rydberg energy is � �22me e
Ry = = 13.6 eV . (5.2) 

2 4π�0h̄

The principal quantum number corresponds to the number of nodes of the radial solution 
of Schrödinger’s equation. In the semi-classical treatment of Bohr, the energy of a circular 
orbit with angular momentum nh̄ is equal to En, but it is important to realize that in proper 
quantum mechanics, there are many possible different values of angular momentum for any 
principal quantum number n (from zero up to approximately nh̄.) 

The wave function for the hydrogen ground state can be written 

1 
ψ = e−r/a0 , (5.3) 

(πa3
0) 

where a0 is called the Bohr radius, 

a0 = 
h̄ 4π�0 

= 5.292 × 10−11 m . (5.4) 
me e2 

Angular momentum of the �electron orbit is quantized by a quantum number l. The 
actual angular momentum is l(l + 1) times Planck’s constant h̄, which is approximately 
lh̄ for large l. The quantum number l can take any integer value up to n − 1. For the 
hydrogen atom the energy levels are (almost) unaffected by l but for multiple-electron atoms 
the energy differences between different l levels become large. In the wave-function, l is the 
number of the spherical harmonic (Pl

m(cos θ)) in its angular variation. Roughly speaking, l 
is the number of nodes of the wave-function. 
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Figure 5.1: Representation of the electron cloud surrounding the nucleus for different quan
tum numbers. [From Herzberg] 

A third quantum number is m which is roughly the component of angular momentum in 
a certain direction. It can take any value in the sequence −l, −l + 1, . . . , l − 1, l. There 
are therefore 2l + 1 states for each l and n + 1 possible l-values, totalling n2 orbital states 
for each principal quantum level. 

Electrons have spin giving rise to (non-orbital) angular momentum h̄/2 and consequently 
2 spin states ±1/2. They also satisfy Fermi-Dirac statistics, notably Pauli’s exclusion princi
ple, which is that no two electrons can occupy the same quantum state. The two spin states 
mean that up to two electrons can occupy any orbital state. However, the additional angular 
momentum of the spin greatly complicates the spectra by shifting the energies, giving rise 
to doublet states and the whole complexity of atoms. 

5.2 Atomic processes in electromagnetic interactions 

Atoms can emit or absorb radiation when their electrons make a transition from one quantum 
state to another. If the energies of the initial and final states are Ei and Ej , then the energy 
of the photon emitted (or absorbed) is hνij = |Ei − Ej | and obviously the conservation of 
energy means that Ei must be greater than Ej for emission and less than it for absorption. 

Absorption normally takes place by electric dipole transitions. If the energy density of 
radiation of frequency ν is ρ(ν) per unit frequency (ν), per unit volume, then the transition 
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probability per unit time from the lower to the upper state is written ρ(νij )Bji with the 
Einstein coefficient, Bji given by Fermi’s golden rule 

8π3 Sij 8π3 1

ψierψj 

∗d3 r

2 

.
 (5.5)
Bji =
 =

3h2 4π�0 3h2 4π�0 

The quantity Sij is the square magnitude of the “matrix element” of the atomic dipole 
moment. (Single quantum states, are considered here to avoid worrying about statistical 
weight.) 

Emission of radiation by the atom if the electron is in the upper state can also be 
induced by the presence of a radiation field. Its rate per unit time is ρ(νij )Bij with the 
emission coefficient, Bij equal to the absorption coefficient Bji. Even in the absence of 
background radiation, “spontaneous” emission occurs with a probability per unit time of 
Aij = Bij 8πhνij /c

3 . A typical order of magnitude for 1/Aij , which is the lifetime of the 
excited state, is nanoseconds. As a result, atoms generally spend most of their time in the 
ground-state, the state of lowest energy, where electrons fill up all the low energy states as 
far as possible consistent with the exclusion principle. 

Selection rules for which transitions are allowed by electric dipole radiation arise from 
the fact that the matrix elements, Sij , are zero unless, for example, Δl = ±1. The energy 
levels are often illustrated graphically using what is called a “Grotrian” diagram, with energy 
(often measured in units of cm−1 corresponding to the inverse of the wavelength, 1/λ = E/hc) 
indicated by height, and angular momentum quantum level on the abscissa. Figure 5.2(a) 
shows the levels for hydrogen, which has equal energy for different l values. Figure 5.2(b) 
shows scaled energies for several different elements but with different levels of ionization so 
that they all possess three electrons, making them “lithium-like”. The angular momentum 
degeneracy is broken, and the active electron can occupy only the principle level n = 2 and 
above, since the n = 1 level is already filled with the other two electrons. 

When both the upper and lower energy states of the electron are bound states, the radi
ation emission occurs as a discrete narrow line at the specific frequency νij . Line radiation 
is characteristic of a particular element and is one of the most powerful means of identifica
tion. However, transitions can also occur between bound states and free electron states. In 
the case of a downward transition, this is a process of “recombination” whereby an initially 
ionized atom recombines with a free electron, emitting the excess energy in the form of an 
electromagnetic photon, and forming a composite atom. In that case, because there is a 
continuous range of possible kinetic energies for the free electron (unlike the situation with 
a bound upper state) there is a continuous spectrum of electromagnetic radiation from this 
process. The opposite process is when a photon excites an initially bound electron into a 
free state. This is the process of photo-ionization of an atom, known more colloquially as 
the photoelectric effect. 

For multiple-electron atoms the electrons are said to reside in “shells”. These shells 
correspond to the principal quantum levels. The lowest energy states, corresponding to 
electrons bound most strongly to the nucleus, are the n = 1 level, known as the K-shell. The 
next n = 2 level is known as the L-shell, and so on. An atom of a relatively heavy element 
has several shells filled with electrons. For example copper has the K, L, and M-shells filled 
and one electron in the N-shell. The easiest electron to remove from the atom is the electron 
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Figure 5.2: Energy level diagrams for (a) Hydrogen, indicating the allowed transitions, 
especially the Balmer series, (b) Lithium-like configurations arising from different stages of 
ionization, each possessing three electrons.[After Herzberg.] 

in the highest energy state. Its binding energy determines the “ionization energy” of the 
element, that is, the energy that needs to be provided to strip the electron off (7.72 eV 
for copper). The K-shell electrons are much more strongly bound. Their binding energy is 
roughly Z2Ry, (more precisely, for copper 9.0 keV, corresponding to a wavelength of 0.138 
nm). 

If a photoelectric absorption removes an inner shell (e.g. K-shell) electron, as is often 
the case, then the resulting partially ionized atom is left in an excited state. Moreover, the 
excitation energy far exceeds the ionization energy of the resulting atom. There is, then, a 
hole in a very deep shell and electrons from other higher shells can liberate a lot of energy 
(roughly the K-shell binding energy) if they make a transition down into the hole. One of 
the easiest ways for this transition to occur is for the excess energy to be given to one of the 
weakly bound electrons in the highest shell. Since the energy exceeds the ionization energy, 
the weakly bound electron becomes completely unbound and is ejected from the atom with 
the excess energy less its binding energy appearing in its kinetic energy. This process is 
called the Auger effect (or sometimes “autoionization”) and the ejected electrons are called 
Auger electrons. 
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5.3 The Photoelectric Effect 

It is interesting to contrast the photoelectric effect with Compton scattering. Both of these 
processes describe a photon interacting with an electron, transferring energy to it, and eject
ing it from its atom. The key differences are 

•	 In Compton scattering the combined momentum of the electron and photon is con
served, whereas in photoelectric absorption, momentum is transferred to the nucleus of 
the atom. Consequently: 

•	 In Compton scattering, a photon emerges from the interaction carrying away substantial 
energy and momentum, whereas the photoelectric effect involves absorption of the 
entire photon energy and its transferral to binding and kinetic energy of the electron. 

•	 Compton scattering is important only when the the photon energy is at least compara
ble to the electron rest energy, whereas the photoelectric cross-section increases strongly 
as the photon energy decreases, and completely dominates the photon absorption for 
energies less than roughly 100 keV. 

The cross-section for photoelectric absorption is not straightforward to calculate rigor
ously. Some of the earliest calculations, prior to the full development of quantum mechanics 
(Kramers 1923), used classical radiation theory and the “correspondence principle” to obtain 
(quite accurate) estimates based on a calculation of the inverse process, radiative recombi
nation, and hence deducing the photoelectric cross-section from equilibrium arguments and 
the principle of detailed balance. These non-relativistic calculations can be carried through 
using the bremsstrahlung formulism we shall discuss later, but the time is probably not well 
spent here. The result of these calculations is to obtain a cross-section for absorption by a 
single K-shell electron of photons with energy above the K-shell binding energy in the form � � � �3

32π2
2 mec

2 

σp = G 
3
√

3 
re α

3Z4 

hν 
.	 (5.6) 

where α is the fine structure constant (≈ 1/137), Z is the nuclear charge, hν = E is the photon 
energy, and G is a numerical factor of order unity. Notice that the square bracket factor 
is roughly seven times the Thomson cross-section (8πre 

2/3). The most important feature, 
however, is the rapid increase of the cross-section (∝ E−3) as the photon energy decreases. 
This cross-section applies only down to a photon energy equal to the K-shell binding energy. 
There is therefore an “absorption edge” in the cross-section at that energy. Below that, 
the photon has insufficient energy for photoionization to occur for K-shell electrons and the 
absorption drops abruptly. However, L-shell electrons can be ejected down to an energy 
about 1/n2 = 1/4 of the K-shell energy, so they remain active, and N-shell electrons to even 
lower energies than that and so on, giving rise to an absorption edge for each shell. The higher 
shells have intrinsically lower cross-section (by classically 1/n3 per electron) but because of 
the strong E−3 energy dependence, the total cross-section still maintains an upward trend 
at decreasing photon energy, as illustrated in Figure 5.3. 

At higher energies, where relativistic effects are important for the ejected electrons, the 
dependence on photon energy becomes weaker. The reason for this is predominantly the 
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Figure 5.3: Photon absorption processes for Lead. At low energy the photoelectric effect 
dominates, and the absorption edges for the different shells are visible. [From H.Anderson, 
Ed.] 

fact that the electron’s velocity becomes constant (equal to c) and, in the limit E � mec
2 , 

its momentum, which determines its quantum phase-space, becomes proportional to energy 
(rather than square-root of energy non-relativistically). The effect is to reduce the power of 
the photon energy dependence to σ ∝ E−1 . 

A different, often cited, approximation for the non-relativistic photoelectric cross-section 
accounting for both K-shell electrons is [H.Hall, Rev. Mod. Phys. 8, 358 (1936)] � �3.5 

mec
σp = 4

√
2Z5α4

2 

σThomson . (5.7) 
hν 

while for the strongly relativistic case, E � mec
2 the formula 

2 

σp = 1.5Z5α4 mec
σThomson (5.8) 

hν 

may be used. [Each of these expressions is the cross-section per atom]. 
A comprehensive graphical representation for total photon absorption down to 1.8 keV 

energy is given in Figure 5.4 

98 



Figure 5.4: Absorption coefficients for all elements. [From Enge] 

5.4 Electrons and Pair Production 

In 1928 Paul Dirac, by a master-stroke of mathematical insight, developed a theory of the 
electron that combines quantum mechanics consistently with relativity. The theory predicted 
many hitherto unsuspected phenomena including especially electron spin, but also that there 
exist electron states of negative energy. In order to explain why electrons do not immediately 
make a transition from their positive energy state to a negative energy state, Dirac postulated 
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that all the negative states are full. In that case, a vacancy or “hole” in the negative energy 
states, which naturally has positive energy with respect to a fully-occupied situation, behaves 
just like an electron except that its charge is positive. Thus the positron was predicted. 
Actually, Dirac first thought that the holes might correspond to protons. However a few 
years later, when the first experimental evidence of positrons was observed, he immediately 
saw this as confirmation of his theory. 

When a positron — a hole in the otherwise full negative energy states — and an electron 
encounter one another, a downward transition of the electron into the lower, negative energy, 
state can occur. The electron fills up the hole, annihilating both particles; its energy becomes 
negative; and the rest energy (2mec

2) and kinetic energy of the two particles appears as a 
photon. The analogy with a electron transition in an atom is helpful, although this situation 
really involves two free states of the electron, so it is more closely allied to bremsstrahlung. 

Filled Negative  Energy States

Empty Positive Energy States

Hole: Positron

Bremsstrahlung

0

Energy

Pair Production

Annihilation

Electron

-m c

+m ce
2

e
2

Figure 5.5: Schematic diagram of positive and negative energy electron states, annihilation 
and pair production. 

Like any elementary quantum process, electron-positron annihilation has an inverse pro
cess: pair production. Pair production occurs when a photon with energy exceeding 2mec

2 

produces an electron and a positron, absorbing all the photon’s energy, through interaction 
with a neighboring charge (usually a nucleus). The presence of the neighboring charge is 
necessary as a perturbation to couple the photon to the electron field and to absorb some 
of the photon’s momentum, which cannot be completely transfered to the electron/positron 
pair because their ratio of momentum to energy is always lower than that of a photon (1/c). 

We are not in a position without extensive relativistic quantum mechanics to calculate 
the cross-section. Its value proves to be a weak (logarithmic) function of the photon energy 
in the range 2mec

2 � hν � mec
2Z−1/3α−1 

28 2hν 218 
σpp ≈ Z2α r2 

9 
ln 
mec

− 
27 

. (5.9) e 2 
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Figure 5.6: Pair production by an energetic photon in the presence of a neighboring charge. 

Qualitatively, one can understand these factors as follows. The Z2 factor arises from the 
strength of the perturbative coupling by a nucleus of atomic charge Z. The fine structure 
constant α ≡ e2/4π�0 ̄ ≡ e2/4π�0mec

2 are characteristic hc and the classical electron radius re 

of coupling between electromagnetic photons and the electron. The cross-section becomes 
essentially constant for very high photon energy hν � mec

2Z−1/3α−1 because of shielding 
of the nucleus by its bound electrons. Naturally the cross-section falls to zero as the photon 
energy is lowered towards 2mec

2 = 1.02 MeV. These characteristics are illustrated in Figure 
5.3. That figure also shows the coefficient for pair production in interaction with electrons. 
It is negligible for heavy elements since the nucleus is slightly more than Z2 times as effective 
as an electron and there are only Z electrons per nucleus. So the total attenuation due to 
all electrons is approximately 1/Z times that of the nuclei. 

Table 5.1: Atomic Parameters: Definitions and Values 

Rydberg Energy 
Bohr Radius 
Fine Structure Constant 
Classical Electron Radius 
Thomson Cross-Section 

Ry 

a0 

α 
re 

σT 

(me/2) (e2/4π�0 ̄h)
2 

h̄24π�0/e
2me 

e2/4π�0 ̄hc 
e2/4π�0mec

2 

8πr2 
e /3 

13.61 
5.292 × 10−11 

1/137.04 
2.818 × 10−15 

6.652 × 10−29 

eV 
m 

m 
m 

Relationships α2 = 2Ry/mec
2 

2Rya0 = e2/4π�0 = αh̄c 
re = a0α

2 

h̄ = meca0α = mecre/α 
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