Structure and Symmetry

22.14 - Intro to Nuclear Materials February 5, 2015

Scanned images, unless cited, are from Allen \& Thomas, "The Structure of Materials," 1999.
22.14 - Intro to Nuclear Materials

Crystallography - The Common Language of Materials Science

Figure 5.63 High-resolution transmission electron micrograph showing high-angle grain boundary in alumina, $\mathrm{Al}_{2} \mathrm{O}_{3}$. This particular boundary is a tilt boundary, with 35.2° misorientation about common [2 $\overline{1} \overline{1} 0]$ direction (Kleebe, 1993, p. 365).
(C) John Wiley \& Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 5.64 High-resolution transmission electron micrograph of grain edge in sintered, reaction-bonded silicon nitride, $\mathrm{Si}_{3} \mathrm{~N}_{4}$. Grain edge is wetted by amorphous phase (Kleebe, 1993, p. 365).

Crystalline vs. Amorphous

The difference is long-range order, and symmetry

(a) Crystalline InP

(b) Amorphous InP
(c) Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
http://physics.anu.edu.au/eme/research/amorphous.php

Symmetry Evident in Materials

(a)

(c)

(b)

(d)

Etch pits in single crystal aluminum

Source: J. H. Seob, J.-H. Ryuc, D. N. Lee. "Formation of Crystallographic Etch Pits during AC Etching of Aluminum." J. Electrochem Soc., 150(9):B433-B438 (2003).
22.14 - Intro to Nuclear Materials

Symmetry and Structure, Slide 4

Simplest Operation: Translation

Move a point by two basis vectors, $\mathrm{t}_{1} \& \mathrm{t}_{2}$

Higher Symmetry

Place restrictions on t_{1} and t_{2}, and the angle between them.

How many combinations can you think of?

Choosing Unit Cells

Draw a cell that does the following:

- Contains fewest number of atoms
- Has angles closest to 90 degrees
- Exhibits the most symmetry

Try with different plane groups in class

Choosing Unit Cells Example

© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative Commons license.For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Choosing Unit Cells

\qquad

Choosing Unit Cells

Choosing Unit Cells

Choosing Unit Cells

Miller Indices

Miller Indices

Symmetry Operators in 2D

Figure 3.10 Operation of fourfold axis of rotational symmetry $A_{\sigma / 2}$.

5

6

7

8

Figure 3.11 Patterns produced by various proper rotation axes.

Symmetry Operators in 2D

Mirror

© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Symmetry Operators in 2D

Glide

Symmetry Operators in 2D

Mirror

Symmetry Operators in 2D

Square Lattice Symmetry

Moving to 3D

Four new symmetry operators

- Inversion
- Rotoinversion (rotation \& inversion)
- Rotoreflection (rotation \& reflection)
- Screw axes (rotation \& translation)

Inversion

Figure 3.33 An inversion center is created between right and left hands when they are positioned as illustrated.

New coordinates

© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Rotoreflection \& Rotoinversion

© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Screw Axes

Rotation followed by translation

Table 3.3 Allowed Crystallographic Screw Axes

n	Components	Proper Rotation Axes	The Eleven Permissible Crystallographic Screw Axes
1	α	0 (or 2π)	
	$\boldsymbol{\tau}$	0 (or Til ${ }^{\text {c }}$	
	Designation	1	
2	α	\#	π
	τ	0	${ }^{\frac{1}{2}} \mathbf{T}_{1 i}$
	Designation	2	21
3	α	$\frac{2}{3} \pi$	${ }^{\frac{2}{3}} \pi \quad \frac{2}{3} \pi$
	τ	0	$\frac{1}{3} T_{i!}{ }_{3}^{2} T_{10}$
	Designation	3	
4	$\begin{gathered} \alpha \\ \tau \end{gathered}$	$\begin{gathered} \frac{1}{2} \pi \\ 0 \end{gathered}$	$\begin{array}{lll} \frac{1}{2} \pi & \frac{1}{2} \pi & \frac{1}{2} \pi \\ \frac{1}{4} \mathbf{T}_{i!} & \frac{2}{4} \mathbf{T}_{i!} & \frac{3}{4} \mathbf{T}_{10} \end{array}$
	Designation	4	$4_{1} \quad 4_{2} \quad 4{ }_{3}$
6		$\frac{1}{3} \pi$	$\begin{array}{lllll} \frac{1}{3} \pi & \frac{1}{3} \pi & \frac{1}{3} \pi & \frac{1}{3} \pi & \frac{1}{3} \pi \\ 10 & 2 & 2 & 3 & \\ \hline 1 \end{array}$
	τ	0	$\frac{1}{6} \mathbf{T}_{1} \mathbf{2}_{6} \mathbf{T}_{i 1} \frac{3}{6} \mathbf{T}_{11} \mathbf{x}_{0} \frac{5}{6} \mathbf{T}_{1}$
	Designation	6	$\begin{array}{llllll}61 & 6_{2} & 6_{3} & 6_{4} & 6_{3}\end{array}$

Source: Buerger, 1978, p. 204.
© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Screw Axes

Rotation followed by translation

© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Generalized Rotation Matrix

$R=\left[\begin{array}{ccc}\cos \theta+u_{x}^{2}(1-\cos \theta) & u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta & u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta \\ u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta & \cos \theta+u_{y}^{2}(1-\cos \theta) & u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \\ u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta & u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta & \cos \theta+u_{\tilde{z}}^{2}(1-\cos \theta)\end{array}\right]$

Or more concisely:

$R=\cos \theta \mathbf{I}+\sin \theta[\mathbf{u}]_{\times}+(1-\cos \theta) \mathbf{u} \otimes \mathbf{u}$,
Where $\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right)$ is a unit vector

Miller Indices in 3D

Directions - [hkl]
 Families of directions - <hkl>
 Planes - (hkl)
 Families of planes - \{hkl\}

Explore Some Examples

Done in class, using Crystalmaker

Miller Indices - Lattice Parameter

Here, $\mathrm{a}=\mathrm{b}=\mathrm{c}$

- Not always the case

Miller Indices - Directions

Drawing directions

 inside unit cell:- [121]
- [011] (1 means negative
- [331]
- Divide so largest index $=1$ to get intercepts

Miller Indices - Direction Examples

Draw the following directions:

- [001]
$-[00 \overline{1}]$
- [250]
- [1111]
- [441]

- [632]
- [633]

Miller Indices - Planes

Example:

- (234)
- Take reciprocals of indices ($1 / 2,1 / 3,1 / 4$)
- Multiply so largest index is one $(1,2 / 3,1 / 2)$
- These are the plane intercepts on lattice axes

Miller Indices - Directions and Planes

Example:

$$
\begin{aligned}
& -(234) \\
& -[234]
\end{aligned}
$$

Miller Indices - Plane Examples

Draw the following planes:

- (001)
- (001)
- (251)
- (111)
- (441)
- (632)
- (633)

Families of Directions \& Planes

Family of [111] directions

(d)

Figure 5.4 Equivalence of the $\{110\}$ planes in a cubic crystal; in (d) the lattice is tetragonally distorted, and the (110) and (101) planes are no longer equivalent.

Miller Indices - Directions and Planes

In a cubic lattice

 directions are normal to planes. Example:$$
\begin{aligned}
& -(234) \\
& -[234]
\end{aligned}
$$

Miller Indices - Angle Between Planes in a Cubic Lattice

Miller Indices - Angle Between Planes in a Non-Cubic Lattice

Multiply vectors by lattice

$$
a=c=3 \AA, b=5 \AA
$$

constants

$$
\cos (\phi)=\frac{h_{1} h_{2}+k_{1} k_{2}+l_{1} l_{2}}{\sqrt{\left(h_{1}^{2}+k_{1}^{2}+l_{1}^{2}\right)} \sqrt{\left(h_{\mathbf{c}}^{2}+k_{2}^{2}+l_{2}^{2}\right)}}
$$

Example:

- (234)
- (110)

- 108.44 degrees

Miller Indices - Directions Common to Planes

Direction [uvw] common to planes

$$
\mathrm{a}=\mathrm{b}=\mathrm{c}=3 \AA
$$

$\left(\mathrm{h}_{1} \mathrm{k}_{1} \mathrm{l}_{1}\right)$ and $\left.\mathrm{h}_{2} \mathrm{k}_{2} \mathrm{l}_{2}\right)$:
$u=k_{1} l_{2}-l_{1} k_{2} \quad v=l_{1} h_{2}-h_{1} l_{2} \quad w=h_{1} k_{2}-k_{1} h_{2}$
Check the Weiss Zone Law:

$$
h u+k v+l w=0
$$

Example:

- (234) and (110)
- [4,4,5]

Bravais Lattices

Figure 3.66 The fourteen Bravais lattices and the six crystal systems.

Packing Fraction

This slide intentionally left blank...

done in class!

Space Groups

Unique combinations of symmetry, denoted by certain symbols

Find them in:
The Int'l Tables for Crystallography http://it.iucr.org/
Or for free at the University College of London: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

Example: Triclinic (P1)

Example: Triclinic ($\mathbf{P} \overline{\mathbf{1}}$)

Example Space Groups

http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

$178 . \underline{P 6122}$	$179 . \underline{P 6522}$	$180 . \underline{P 622}$	$181 . \underline{P 6422}$	$182 . \underline{P 6322}$
$183 . \underline{P 6 m m}$	$184 . \underline{P 6 c c}$	$185 . \underline{P 63 c m}$	$186 . \underline{P 63 m c}$	$187 . \underline{P-6 m 2}$
$188 . \underline{P-6 c 2}$	$189 . \underline{P-62 m}$	$190 . \underline{P-62 c}$	$191 . \underline{P 6 / m m m}$	$192 . \underline{P 6 / m c c}$
$193 . \underline{P 6} / \mathrm{mcm}$	$194 . \underline{P 63 / m \mathrm{mc}}$			

Cubic

195. P23	196.F23	197. I23	198. $\underline{P 213}$	199. $\underline{I 213}$
200. Pm-3	201. Pn-3	202. Frm-3	203. Fd-3	204. Im-3
205. Pa-3	206. Ia-3	207.P432	208.P4232	209.F432
210.F4132	211.I432	212. P4332	213. $P 4_{1} 32$	214. $\underline{I} 4_{1} 32$
215. P-43m	216. $F-43 m$	217. I-43m	218. P-43n	219. F-43c
	© Birkbeck College, University of London. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.			

$\mathrm{P}_{3} / \mathrm{mmc}$

$\mathrm{Pb}_{3} / \mathrm{mmc}$

$P 66_{3} / m 2 / m 2 / c$
6/mmm No. 194
$1 x, y, z$
$2 \bar{y}, x-y, z$
$3 \bar{x}+y, \bar{x}, z$
$4 \bar{x}, \bar{y}, \frac{1}{2}+z$
$5 x-y, x, \frac{1}{2}+z$
$6 y, \bar{x}+y, \frac{1}{2}+z$
$7 \bar{y}, \bar{x}, z$
$8 \bar{x}+y, y, z$
$9 x, x-y, z$
$10 y, x, \frac{1}{2}+z$
$11 x-z, \bar{y}, \frac{1}{2}+z$
$12 \bar{x}, \bar{x}+y, \frac{1}{2}+z$
$13 \bar{x}, \bar{y}, \bar{z}$
$14 y, \bar{x}+y, \bar{z}$
$15 x-y, x, \bar{z}$
$16 x, y, \frac{1}{2}-z$
$17 \bar{x}+y, \bar{x}, \frac{1}{2}-z$
$18 \bar{y}, x-y, \frac{1}{2}-z$
$19 y, x, \bar{z}$
$20 x-y, \bar{y}, \bar{z}$
$21 \bar{x}, \bar{x}+y, \bar{z}$
$22 \bar{y}, \bar{x}, \frac{1}{2}-z$
$23 \bar{x}+y, y, \frac{1}{2}-z$
$24 x, x-y, \frac{1}{2}-z$

$23 \bar{x}+y, y, \frac{1}{2}-z$
$24 x, x-y, \frac{1}{2}-z$
© Birkbeck College, University of London. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Example Space Groups

http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

188. $\underline{P-6 c 2}$ 189. $\underline{P-62 m}$ 190. $\underline{P-62 c}$ 191. $\underline{P 6 / m m m} \quad$ 192. $\underline{P 6 / m \mathrm{cc}}$
189. P_{63} / mcm 194. P_{63} / mmc

Cubic

195.P23	196.F23	197. 123	198. $P_{21} 3$	199. $\underline{I 213}$
200. Pm-3	201. P^{n-3}	202. FT-3	203. Fd-3	204. Im -3
205. Pa-3	206. Ia-3	207.P432	208.P4232	209.F432
210.F4132	211.1432	212.P4332	213. P4, 32	214. 14132
215. P-43m	216. $\underline{F-43 m}$	217. I-43m	218. P-43n	219. $\underline{F-43 C}$
220. I-43d	221. Pm-3m	222. P n-3n	223. Pm-3n	224. $\mathrm{P}^{n-3 m}$
225.Fm-3m	226. Fm-3c	227. Fd-3 m	228. Fd-3c	229. Im-3m
230.Ia-3d	© Birkbeck College, University of London. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.			

$1 x, y, z$	$25 \bar{x}, \bar{y}, \bar{z}$
$2 x, \bar{y}, \bar{z}$	$26 \bar{x}, y, z$
$3 \bar{x}, y, \bar{z}$	$27 x, \bar{y}, z$
$4 \bar{x}, \bar{y}, z$	$28 x, y, \bar{z}$
$5 z, x, y$	$29 \bar{z}, \bar{x}, \bar{y}$
$6 \bar{z}, \bar{x}, y$	$30 z, x, \bar{y}$
$7 z, \bar{x}, \bar{y}$	$31 \bar{z}, x, y$
$8 \bar{z}, x, \bar{y}$	$32 z, \bar{x}, y$
$9 y, z, x$	$33 \bar{y}, \bar{x}$
$10 \bar{y}, z, \bar{x}$	$34 y, \bar{z}, x$
$11 \bar{y}, \bar{z}, x$	$35 y, z, \bar{x}$
$12 y, \bar{z}, \bar{x}$	$36 \bar{y}, z, x$
$13 x, \bar{z}, y$	$37 \bar{x}, z, \bar{y}$
$14 x, z, \bar{y}$	$38 \bar{x}, \bar{z}, y$
$15 \bar{x}, \bar{z}, \bar{y}$	$39 x, z, y$
$16 \bar{x}, z, y$	$40 x, \bar{z}, \bar{y}$
$17 z, y, \bar{x}$	$41 \bar{y}, x$
$18 \bar{z}, y, x$	$42 z, \bar{y}, \bar{x}$
$19 \bar{z}, \bar{y}, \bar{x}$	$43 z, y, x$
$20 z, \bar{y}, x$	$44 \bar{z}, y, \bar{x}$
$21 \bar{y}, x, z$	$45 y, \bar{x}, \bar{z}$
$22 y, \bar{x}, z$	$46 \bar{y}, x, \bar{z}$
$23 \bar{y}, \bar{x}, \bar{z}$	$47 y, x, z$
$24 y, x, \bar{z}$	$48 \bar{y}, \bar{x}, z$
$+\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}, 0\right)$	

© Birkbeck College, University of London. All rights reserved. This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
22.14 - Intro to Nuclear Materials

Symmetry and Structure, Slide 48

Explore Some Examples

Done in class, using Crystalmaker

MIT OpenCourseWare
http://ocw.mit.edu

22.14 Materials in Nuclear Engineering

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

