22.313J, 2.59J, 10.536J THERMAL-HYDRAULICS IN POWER TECHNOLOGY

Tuesday, May 22^{nd} , 2007, 9 a.m. – 12 p.m.

OPEN BOOK	FINAL	3 HOURS

Problem 1 (35%) – Steady-state natural circulation in a steam generation system

Saturated steam at 3 MPa (properties in Table 1) is used in a certain factory. The steam is generated by the system shown in Figure 1, which consists of a natural gas-fired heater, a riser of height L, a steam separator of form loss K, and a downcomer. The makeup flow can be assumed to be saturated water at 3 MPa. The riser and the steam separator have the same flow area, A.

Figure 1. Schematic of the steam generation loop

- i) Using the conservation equations and their constitutive relations, find a single equation from which the mass flow rate in the loop, \dot{m} , could be found as a function of the heat rate, \dot{Q} , and the parameters A, L and K, i.e., $f(\dot{m}, \dot{Q}, A, L, K)=0$. (20%)
- ii) Find \dot{m} for the two limit cases $\dot{Q} = 0$ and $\dot{Q} = \dot{m} h_{fg}$. Do you think the \dot{m} vs \dot{Q} curve (with fixed *A*, *L* and *K*) could have a maximum between these two limits? Explain your answer qualitatively. (10%)
- iii) For a given \dot{Q} , how does \dot{m} change if K increases or L increases or A increases? (5%)

Assumptions:

- Steady state
- Steam separator efficiency is one
- Use HEM for the void fraction in the riser
- Neglect all acceleration and friction terms in the loop momentum equation
- Use the HEM multiplier for the form loss in the separator, $\phi_{\ell_0}^2 = 1 + x \left(\frac{\rho_f}{\rho_g} 1 \right)$

Table 1. Properties of saturated water at 3 MPa.

Parameter	Value
T _{sat}	234°C (507 K)
$ ho_{ m f}$	822 kg/m^3
$ ho_{g}$	15 kg/m^3
h_{f}	1,008 kJ/kg
hg	2,803 kJ/kg
C _{p,f}	4.7 kJ/(kg°C)
C _{p,g}	3.6 kJ/(kg°C)
μ_{f}	1.1×10^{-4} Pa·s
$\mu_{ m g}$	1.7×10 ⁻⁵ Pa·s
k _f	0.638 W/(m°C)
kg	0.047 W/(m°C)
σ	0.030 N/m

Problem 2 (55%) – Water boiling during a loss-of-flow transient in a home heating system

A large condo building uses a water forced-convection heating system. The heater consists of hundreds of round channels of diameter D=2.54 cm and length L=1 m in which water is heated by an axially uniform heat flux, $q''=200 \text{ kW/m}^2$ (see Figure 2). The system operates at 1 MPa and the water temperature at the inlet of the heater channel is $T_{in}=90^{\circ}\text{C}$ ($h_{in}=365.6 \text{ kJ/kg}$). Under normal operating conditions the mass flux is $G_o=1000 \text{ kg/m}^2\text{s}$ and no boiling occurs in the channel. A pump malfunction occurs at t=0, so that the mass flux in the heater channel starts to decay exponentially, i.e., $G(t) = G_o e^{-t/\tau}$, where $\tau = 10$ s. Assume that the heat flux, pressure and inlet temperature remain constant throughout the transient.

Figure 2. A heater channel.

Parameter	Value
T _{sat}	180°C (453 K)
$ ho_{ m f}$	887 kg/m^3
$ ho_{g}$	5.1 kg/m^3
h_{f}	763 kJ/kg
hg	2,778 kJ/kg
C _{p,f}	4.4 kJ/(kg°C)
C _{p,g}	2.6 kJ/(kg°C)
$\mu_{ m f}$	1.5×10^{-4} Pa·s
$\mu_{ m g}$	1.4×10 ⁻⁵ Pa·s
k _f	0.677 W/(m°C)
kg	0.034 W/(m°C)
σ	0.042 N/m
R [*]	462 J/kg·K

Table 2. Properties of saturated water at 1 MPa.

- i) Using a simplified version of the energy conservation equation, $G\frac{\partial h}{\partial z} = \frac{q''P_h}{A}$, calculate the fluid enthalpy and equilibrium quality as functions of z and t. (5%)
- ii) At what time does the bulk temperature reach saturation? Assume the specific heat does not change with temperature. (5%)

- iii) At what time does nucleate boiling start? Use the Davis and Anderson model for ONB and assume that the single-phase forced convection heat transfer coefficient, *H*, is proportional to the mass flux, i.e., $H = H_o \frac{G(t)}{G_o}$, where $H_o = 9.3$ kW/m²K. (10%)
- iv) At what time does a significant amount of vapor first appear in the channel? (10%)
- v) Qualitatively sketch the MDNBR vs. time. (5%)
- vi) Qualitatively sketch the bulk and wall temperatures vs. time at the channel outlet. (10%)
- vii) Estimate the time at which two-phase density-wave oscillations appear in the channel. Use the stability map of Figure 3 below. (10%)

Figure 3. Stability map for the heater channel.

Problem 3 (10%) – Short questions on bubble nucleation

i) A steam bubble grows at a cavity with the geometry shown in Figure 4. What can you say about the steam temperature in this situation? (5%)

Figure 4. Steam bubble growing within a wall cavity.

ii) To obtain bubble nucleation at a cavity of radius 1 μ m on a copper surface, a certain fluid (of contact angle 135° with copper) requires a 2°C superheat. What would the required superheat be for bubble nucleation at a cavity of radius 3 μ m on steel, if the fluid contact angle with steel were 45°? (5%)