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22.313J, 2.59J, 10.536J THERMAL-HYDRAULICS IN POWER TECHNOLOGY 

Tuesday, May 22nd, 2007, 9 a.m. – 12 p.m. 

OPEN BOOK FINAL (solutions) 

Problem 1 (35%) – Steady-state natural circulation in a steam generation system 

i) The flow in the loop is due to natural circulation, driven by the density difference between the 
two-phase riser and the single-phase downcomer.  The momentum equation for the loop is: 

m& 2 

(ρdown − ρriser )gL = φl 
2 
oK 

2ρ f A2       (1)  

where the friction and acceleration terms have been neglected, as per the problem assumptions.   
The fluid in the downcomer is saturated water therefore its density is ρdown=ρf, while the density 
in the riser is: 

ρriser = αρ g + (1−α )ρ f        (2)  

where α is the void fraction. If HEM is used: 

α = ρg 

1
1− x 

        (3)  
1+ ⋅ 

ρ f x 

where x is the flow quality in the riser.  The two-phase multiplier for the form loss in the steam 
separator is: 

2 fφlo = 1+ x⎜
⎛
⎜ ρ

ρ 
−1⎟

⎞
⎟         (4)  

⎝ g ⎠ 

per the problem assumption.  The flow quality x can be found from the energy balance for the 
heater: 

Q& = xhfgm& ⇒ x = Q& /(hfgm& )       (5)  

where it was assumed that the equilibrium quality is equal to the flow quality, a very good 
assumption since the riser is a saturated mixture of steam and water.  Eliminating x in Eqs. (3) 
and (4) by means of Eq. (5), and substituting Eqs. (2) and (5) into Eq. (1), one gets the answer: 
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⎤
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fg ⎜
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⎟
⎠⎥⎦ 2ρ f A2 

Q& /(m& hfg ) ρ f 

which could be solved to find m& = m& ( Q& ,A,L,K). 

ii) If Q& =0 (no steam), one has x=0, α=0, ρriser=ρf, and therefore m& =0. 
ρ

For Q& = m& hfg (complete vaporization), one has x=1, α=1, ρriser=ρg, φl
2
o = f  and From Eq. (1): 

ρg 

2ρg A2 (ρ f − ρg )gL
m& = 

K 
       (7) 


An increase in heat rate, Q& , increases the density difference between the riser and the 
downcomer, which would tend to increase the flow.  However, an increase in Q&  also increases 
the quality and thus the two-phase form loss multiplier, which of course would tend to reduce the 
flow. Because there are two conflicting effects, a maximum in the m&  vs Q&  curve is possible. 
bThis curve is shown for some representative values of A, K and L in Figure 1, and it does in fact 
have a maximum. 

)/( fghmQ && 

Figure 1. m&  vs Q&  curve 
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iii) For a given Q& , m& : 
- decreases with increasing K because the resistance to the flow is higher 
- increases with increasing L because the gravity head driving the flow is higher 
- increases with A because a larger flow area reduces the velocity and thus reduces the 

form pressure loss in the separator. 

Problem 2 (55%) – Water boiling during a loss-of-flow transient in a home heating system 

i) The energy equation can be readily integrated to give: 

h(z, t) = hin + 
q"Ph zet /τ        (8)  
AGo 

where Ph=πD=7.98 cm and A=π/4⋅D2=5.1 cm2. Then the equilibrium quality, xe, is: 

x (z,t) ≡
h − hf = 

hin − hf + 
q"Ph zet /τ      (9)  e
 hfg hfg hfg AGo


ii) Before reaching saturation h-hin can be expressed as Cp,f(Tb-Tin), where it is was assumed that 
the specific heat is independent of temperature, as per the hint.  Thus, from Eq. (8) one gets: 

Tb (z, t) = Tin + 
q"Ph zet /τ        (10)  

Cp , f AGo 

Obviously, saturation is first reached at the channel outlet, so setting Tb=Tsat and z=L in Eq. (10) 
and solving for t, one gets the time at which saturation first occurs in the channel: 

tsat = τ ln⎢
⎡Cp, f (Tsat −Tin )AGo 

⎥
⎤ 

≈25.3 s (11)
⎣ q"PhL ⎦ 

An identical result would have been obtained by setting h=hf in Eq. (8) or xe=0 in Eq. (9). 

iii) The Davis and Anderson model for the Onset of Nucleate Boiling (ONB) gives a relation 
between the heat flux and the wall superheat, Tw-Tsat, at ONB, as follows: 

* 2 

(Tw − Tsat )ONB = 
8R Tsatσ q" ≈2.2°C a ⇒ Tw,ONB=182.2°C (12)
k f hfg P 

* 2a The corresponding cavity radius is 2R Tsatσk f ≈ 3.7μm , which is reasonable. rc,ONB = 
Phfg q" 
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where P=1 MPa is the system pressure.  To find the time at which the wall temperature reaches 
182.2°C, we can use Newton’s law of cooling: 

q"= H (Tw −Tb )         (13)  

where H = Ho 
G(t)  is the heat transfer coefficient, as per the problem statement.  Substituting 
Go 

Eq. (10) into Eq. (13), setting Tw =Tw,ONB, recognizing that at any given time the maximum wall 
temperature is at z=L, and solving for t, one gets the time at which ONB first occurs in the 
channel: 

⎡ ⎤ 

tONB = τ ln⎢
⎢ Tw,ONB −Tin ⎥

⎥ 
≈11.7 s (14)

⎢ q"PhL q" ⎥

⎢ + ⎥

⎣ AGoCp, f Ho ⎦ 

Note that tONB<tsat, which justifies the use of Eq. (10) for Tb in Eq. (13). 

iv) The Onset of Significant Void (OSV) will first occur at z=L, and can be predicted with the 
Saha and Zuber correlation: 

⎧ q"D 
⎪0.0022 

k Pe < 7×104 

⎪ f 

(Tsat −Tb )OSV = ⎨      (15)  
⎪ q" Pe ≥ 7×104 

⎪ 154

⎩ GCp, f


where Pe≡(GDCp,f)/kf. Since OSV will occur after ONB, and Pe≈5×104 at ONB, we can 
conclude that Pe<5×104 and thus, from the first expression in Eq. (15), Tb,OSV≈163.4°C. Setting 
Tb=Tb,OSV and z=L in Eq.(10) and solving for t, one gets the time at which OSV first occurs in the 
channel: 

tOSV = τ ln
⎡
⎢ 
C p, f (Tb,OSV −Tin )AGo ⎤

⎥ ≈23.3 s (16)
⎣ q"Ph L ⎦ 
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v) The DNBR is defined as ′′ / q ′′  at any location in the channel. Since decreases withqDNB qDNB ′′
increasing xe, the minimum DNBR (MDNBR) is at the channel outlet at any given time. The 
MDNBR vs time is sketched qualitatively in Figure 2 below. Note that the MDNBR decreases 
rapidly with time because of the combined effect of the mass flux exponential decay 
( G(t) = Goe

−t /τ ) and xe exponential growth (Eq. 9). Therefore, DNB will occur (MDNBR=1) 
soon after ONB. This can be avoided if the normal mass flux is re-established or the heat flux is 
significantly reduced. 

t (s) 

MDNBR 

tDNBtONB0 

1 

Figure 2. MDNBR vs t curve. 

vi) The bulk temperature increases exponentially per Eq. (10) until it reaches Tsat; then it stays at 
Tsat until xe=1. The wall temperature is found from Newton’s law of cooling as 

Tw = Tb + q"/ H (17) 

where H is the heat transfer coefficient at time t. For t<tONB H is the single-phase heat transfer 
coefficient, but for t>tONB H increases as the heat transfer regime becomes partial and then fully-
developed subcooled nucleate boiling. However, at t=tDNB H drops dramatically because the 
transition to film boiling occurs.  Failure (burnout) of the heater channel is expected soon after 
this transition. The qualitative time history of the bulk and wall temperatures at the channel 
outlet is shown in Figure 3. Note that without a quantitative calculation of qDNB ′′  vs. time, it is not 
possible to determine a priori whether tDNB>tsat or vice versa. 
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Figure 3. Time history of the bulk and wall temperatures at the channel outlet (not to scale) 

vii) To determine the onset of dynamic instability, one first has to calculate the subcooling 
number, Nsub: 

Nsub =
ρ f − ρg ⋅ 

hf − hin        (18)  
ρg hfg 

and the phase change number, Npch: 

N pch =
ρ f − ρg ⋅ 

q"PhL        (19)  
ρg GAhfg 

At normal operating conditions the values for the heater channel are Nsub≈34 and Npch≈3, which 
identify a stable point on the stability map.  However, for t>0 the phase change number increases 
because the mass flux decreases, while Nsub remains constant because the inlet enthalpy and 
pressure are fixed throughout the transient. Therefore, the channel “trajectory” on the stability 
map is a straight horizontal line (see Figure 4 below).  The Npch value at which instability occurs 
is 38, found by intersecting the trajectory with the stability line, Nsub=Npch - 4. Then, solving Eq. 
(19) for G, one gets Gunst≈70.5 kg/m2s. The time at which G=Gunst is: 

otcr = τ ln
⎛
⎜⎜ 

G ⎞
⎟⎟ ≈26.5 s (20)

⎝ Gunst ⎠ 
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Figure 4. Trajectory of the channel on the stability map. 

Problem 3 (10%) – Miscellaneous short questions 

i) Since the steam/liquid interface is flat (i.e., the radius of curvature is infinite), the steam 
pressure is equal to the liquid pressure.  This can happen only if the steam is at the saturation 
temperature corresponding to the liquid pressure, i.e., 100°C assuming the liquid is at 1 atm. 

ii) The critical (or maximum) superheat, ΔTsat,cr, is inversely proportional to the minimum radius 
of curvature of the bubble, as it grows at the cavity mouth: 

K
ΔTsat ,cr =         (21)  

rmin 

where K is the proportionality constant (K=2σT 2 R*/(hfgPℓ)), which depends on fluid andsat

pressure, and rmin depends on the cavity radius, rc, and the contact angle, θ, as follows: 

r⎧ c o 

rmin = ⎨
⎪
⎪sinθ θ > 90 

      (22)  
⎪ r θ ≤ 90o 

c⎪⎩ 

Using Eqs. (21) and (22) for ΔTsat,cr=2°C, rc=1 μm and θ=135°, one finds K≈2.828 μm°C. Thus, 
for rc=3 μm and θ=45°, ΔTsat,cr≈0.94°C. 


