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Problem 1 (30%) – Hydraulic analysis of the PWR primary system at cold zero-power 
conditions 
 
i) The momentum equation for the loop is: 
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where m is the mass flow rate, L=40 m is the total length of the loop, A=1.65 m2 is the flow area, 
Kcore=7 and Ksg=4 are the form loss coefficients for the core and steam generator, respectively.  
The acceleration and friction terms were neglected in Equation 1, as per the problem statement.  
Moreover the gravity term is zero because the fluid is isothermal. 

At steady-state 0
dt
dm

=  and Equation 1 can be easily solved for the steady-state mass flow rate, 

mss: 
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ii) Equation 1 can be re-written as follows: 
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Equation 3 can be integrated to find m(t) during start-up.  Separating the variables, making use of 
the hint in the problem statement, and setting the initial condition m(0)=0, one gets: 
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where the time constant, τ, is defined as follows: 
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Equation 4 is plotted in Figure 1.  The time it takes to reach 50% of the steady-state value can be 
calculated by setting m=0.5⋅mss in Equation 4, and solving for t. 
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Figure 1.  PWR primary system mass flow rate during cold zero-power start-up. 
 
iii) Equation 5 indicates that the time constant is proportional to the loop length and inversely 
proportional to the square root of the pump head.  Thus, it can be concluded that the time 
constant for the scaled-down loop will be lower than for the actual PWR primary system by a 
factor of √10≈3.16. 
 
 
Problem 2 (25%) – Surface tension effects in borated water draining from a BWR Standby 
Liquid Control Tank. 
 
i) The water pressure at the bottom of the tank, Pℓ, can be calculated as follows: 
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where Patm is the atmospheric pressure, ρℓ is the borated water density and L is the level in the 
tank.  Let us now focus on the liquid/air interface at the hole.  For a contact angle >90°, the effect 
of surface tension is to oppose draining.  The condition for static equilibrium (i.e., no draining) 
is: 
 

 
r

2PP atm
σ

=−l          (8) 

 



where σ is the surface tension and r is the radius of curvature, which can be derived from simple 
geometric considerations: 
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with dH=0.5 mm.  Combining Equations 7 and 8, one gets the maximum level of borated water 
that can be held up by the surface tension in the hole, Lmax: 
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Since the initial level is higher than Lmax, the borated water will drain until L=Lmax. 
 
ii) If the contact angle is <90°, the tank will drain completely because surface tension no longer 
opposes draining. 
 
iii) If the tank top is sealed and there is a cover gas, the borated water will drain until the cover 
gas pressure, Pcg, becomes sufficiently low.  The condition for static equilibrium is: 
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where the positive sign on the right-hand side applies to contact angles >90° and the negative 
sign to contact angles <90°.  Thus, the contact angle will affect the equilibrium pressure of the 
cover gas, but at a certain point draining will stop regardless of the value of the contact angle. 
 
 
Problem 3 (25%) – Flow split between a heated and an adiabatic channel. 

i) The mass equation for the system is: 
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where  and  are the mass flow rate in channels 1 and 2, respectively.  The energy 
equations are: 

1m& 2m&
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where T1L and T2L are the temperature at the outlet of channels 1 and 2, respectively. 
The momentum equations are: 
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where Po is the inlet plenum pressure.  Equations 12 through 16 are 5 equations in the 5 
unknowns , , T1m& 2m& 1L, T2L and Po.  Substituting Equation 13 into Equation 15, eliminating Po 
from Equations 15 and 16, and solving for , one gets: 1m&
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ii) If ,  from Equation 12.  Solving Equation 17 for , one gets: 0m2 =& tot1 mm && = Q&
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iii) If the heat rate in channel 1 is increased beyond , the flow in channel 2 actually reverses.  
Explanation: in this system the column weight in channel 2 sets the pressure drop for both 
channels (see Equation 16).  Focus now on channel 1.  Because of the heating, the column 
weight in channel 1 is lower than the total pressure drop (Equation 15).  So in general, channel 1 
will have higher flow rate than channel 2.  When the heating is so high that the flow rate in 
channel 1 is higher than the total flow rate m

oQ&

tot, the flow in channel 2 has to reverse to satisfy 
continuity (Equation 12). 
 
 
Problem 4 (20%) – Quenching experiments to simulate boiling heat transfer during a LB-
LOCA. 
 

i) The main differences are geometry (spherical vs. cylindrical) and materials (copper vs. 
zirconium).  Geometry differences will have an effect mostly on film boiling and DNB.  
Materials differences will have an effect mostly on nucleate boiling.  Because of 
geometry, size and materials differences, the experiment and reactor situation will also 
have different thermal capacities, and thus different time scales. 

 
ii) The energy balance for the sphere is: 
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where ρ and Cp are the copper density and specific heat, respectively, T, V and S are the 
sphere temperature, volume and surface, respectively, q" is the heat flux at the surface, h 
is the heat transfer coefficient, and Tsat is the saturation temperature of water. 

 



iii) The qualitative sketch of the sphere temperature history for an initial temperature of 
1,500°C is shown in Figure 2.  The sphere goes through all heat transfer regimes, 
including transition boiling, because the situation is temperature controlled, not heat-flux 
controlled.  Note that the film boiling region has the longest duration because of its large 
temperature width.  The concavity of the T-t curve can be determined by differentiating 
Equation 19: 
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Since the term ⎟
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dt
dT  is obviously positive, the concavity depends only on the 

derivative of the heat flux with respect to temperature.  Thus, the concavity is positive for 
film boiling, nucleate boiling and natural convection, but is negative for transition 
boiling. 
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Figure 2.  Temperature history during quenching. 

 


