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THERMOELASTIC STRESSES IN A HOLLOW CYLINDER WITH 

THIN-WALLED INTERNAL CLADDING 

FOR AXISYMMETRIC PLANE STRAIN CONDITIONS 

1. Introduction 
Vessels and pipes are being clad or coated by corrosion resistant layers in order to 

prevent direct contact between the basic vessel or pipe material and the contained fluid. If 
the compound structure is also to be subjected to severe temperature conditions, the design 
should aim to minimize the effect of thermal stresses. 

The following analysis is concerned with the simple case of thermoelastic stresses 
under axisymmetric plane strain conditions in a thick-walled long hollow cylinder with thin-
walled internal cladding of thickness t (Fig. 1), where the cladding is assumed to have been 
inserted or bonded to the hollow cylinder under conditions not imposing prestressing to 
either member. The structure is subjected to a polar-symmetric temperature field T (r). 
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Fig. 1. The clad tube 



The thermoelastic materials properties of the hollow cylinder and the cladding. i.e. 
the coefficient of thermal expansion a, the modulus of elasticity E, and the Poisson's ratio n, 
are considered to be constant (independent of temperature). The material properties of the 
hollow cylinder are distinguished from those of the cladding by the use of the subscripts h 
for the hollow cylinder and c for the cladding. The inner surface of the cladding shell is 
defined by the radius ri,  the contact surface is defined by the radius r1, and the outer surface 
of the hollow cylinder is defined by the radius ro. It is assumed that the ratio t/ro << 1. 

In determining the thermoelastic stress-strain relations of the composite body, the 
hollow cylinder and the cladding are first considered as hypothetically separate free bodies 
(Fig. 2). Under the influence of temperature gradients and/or due to differing thermoelastic 
properties these hypothetically separated bodies experience different thermoelastic 
derformations. 
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Fig. 2 The free bodies.
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However, since there is assumed to be ideal bonding between hollow cylinder and cladding, 
the deformations of both components of the composite body must be compatible at the 
contact surfaces, i.e. 

(uc)r = r1 
= (uh )r = r1 

and (ez , h )r = r1 
= (ez, h )r = r1 

(I-1,2) 

The stress-displacement field of the composite cylinder can be evaluated on the basis 
of these compatibility conditions. The equations contain two undetermined terms, namely 
the radial pressure p* acting at the contact interface r1, and the constant axial strain ez. 

If the free radial thermal expansion of the cladding is larger than the free radial

thermal expansion of the hollow cylinder internal surface, the contact pressure p* is a

compressive stress.


In the following study it is assumed that ac > ah, implying that p*< 0 throughout. 

2. Free Body Equations 
2.1 Thick-Walled Hollow Cylinder 

The following conditions are imposed on the thick-walled hollow cylinder: 

(sr ) r = r1 = - p* , (sr ) r = ro = 0 , T = T (r). (1) 

Using these conditions and introducing an average temperature T̂ according to Eq. 
[M-11/(34)] for the region r1 £ r £ ro ,  into the general thermoelastic relations for the 

axisymmetric plane (polarsymmetric) state of plane strain, Eqs. [M-11/(16)-(19)], leads to the 
following equations: 
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2.2 Thin-Walled Cladding 
The following conditions are imposed on the thin-walled cladding: 

(s r) r = r1 
= 0, (s r) r = r1 

= - p*, T @ Tc = To = const. (6) 

whereby Eqs. [M-11/(16)-(19)] reduce to: 
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sr = 0 , sq = - p* 
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3. Compatibility Conditions of the Compound Body 
Employing the condition of compatibility of radial displacements for the composite body, 

(uc) r = r1 
= (uh ) r = r1 

(13) 
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there follows from Eqs. (2) and (11): 
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Since with a thin-walled cladding the ratio r1 t  is so large that the relevant term in Eq. 

(14) is by far the dominant one in the coefficient expression for p * , Eq. (14) can be

simplified to become
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these equations are subtracted from each other in order to eliminate the unknown constant 
pressure p* leading to the expression 
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(substitution of the approximative solution for ez  under the condition t r1 << 1 into the not 
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Herewith the originally unknown parameters of the composite structure are determined. 

4. Thermoelastic Relations for the Composite Body 
Introducing the Eqs. (19) and (20) into the equation for the radial displacement of the


hollow cylinder, Eq. (2) yields:
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Introducing Eqs. (19) and (20) into the relation for the radial displacement of the 
cladding, Eq. (7) gives: 
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5. The Elastic Limit 
The thermoelastic relations derived in the previous sections are valid as long as the 

difference expression 
H =a c To - a h T̂ (14a) 
is small enough so that yielding does not occur. The numerical value of H at which 

yielding starts may be evaluated by substituting the relations for the thermoelastic stresses 
into an appropriate multiaxial yield criterion, e.g. the Tresca or the von Mises yield criterion. 
Yielding may start either in the cladding or in the hollow cylinder, and each possibility has to 
be investigated. 

A relevant study for the Tresca yield criterion has been done by B.W. Shaffer who also 
investigated the conditions of plastic flow within the cladding. 
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