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1. Introduction 

In a nuclear reactor environment, a fuel element cladding is subject to both pressure loadings and 
cyclic thermal stresses.  The pressure force on the fuel element are caused by the external coolant 
flow acting on the outside surface of the cladding and the pressure forces due to fuel swell and 
fission gas release acting on the inside.  The thermal stresses are caused by the temperature 
gradient that exists across the cladding wall and is related to the neutron flux; hence, it varies 
cyclically with the power output requirements of the reactor. 

When a fuel element is thermally cycled under a sustained pressure it can experience cumulating 
inelastic deformations, a process which is called ratchetting. This phenomenon occurs when 
uni-directional inelastic strains are produced during each temperature cycle and these, because of 
their irreversible nature, have a cumulative effect which causes progress growth of the clad in 
both the radial and axial directions.  Ratchetting can restrict coolant flow and can ultimately lead 
to failure of fuel ?elements?. 

The first analytical treatment concerning the ratchetting phenomenon by D.R. MILLER 
investigated the ratchet mechanism associated with ?combining? thermal and mechanical stresses 
in thin-walled cylindrical pressure vessel for cases of heat flow with and without heat generation 
within the walls By using a simple uniaxial model which represents the behavior of the ? stresses 
in the cylinder wall, MILLER derives a criterion for the incremental growth when the material 
ratchets due to plastic deformations. 

J. BREE presented an analysis in which the inelastic strains developed by thermal cycling were 
caused by both yielding and creep.  BREE’s theory, however, does not include the effects of 
material property dependence on temperature and irradiation, and requires that a steady-state 
stress cycle established across the clad thickness before an estimation can be made with regards 



to the incremental growth per cycle.  Furthermore, the ? requires that the pressure forces in the 
clad remain constant throughout the cycling process. 
HIBBELER and MURA developed an analysis of the creep ratchetting problem which includes 
those effects which BREE has neglected to take into count.  This analysis assumes linear 
viscoelastic behavior of the cladding material. 

2. Development of a Two-Bar Mechanism Model 

Provided the cylindrical cladding of a sealed reactor fuel rod is considered thin, and the 
assumption of plane strain holds, the distribution of circumferential stress sq and axial stress sz 

across the thickness of the clad wall when subjected to a net internal pressure, p = po - pi 

becomes uniform having the magnitude 

pR pR
sq = , s Z = 

t 2t 

(1a,b) 

The effect of sr is negligible.  In these equations t is the thickness of the clad, and R is the radius 
measured to the mean thickness of the clad. 

For a thin cylindrical shell having a temperature drop DT across its wall, the thermal stress 
distribution is linear, having the extreme values 

EaDT 
s = s Z = ± (2)q 2 1 ( - v) 

at the inner and outer surfaces of the cladding.  E, v, and a are the module of elasticity, the 
Poisson's ratio, and coefficient of thermal expansion, respectively, of the clad material. 

Since even with such a simple biaxial stress distribution an analysis ? the creep ratchetting 
phenomenon is complicated, R. HIBBELER and T. MURA in their study of creep ratchetting of 
cylindrical fuel element claddings further simplified the analysis by considering the hoop stresses 
as the ? significant stresses in causing creep ratchetting.  For a first approximation this 
assumption appears justifiable since relatively large fuel swelling and gas pressures develop in 
comparison with the imposed thermal stress distribution.  The influence of neglecting the effect 
of sz in comparison with sq in the following analysis will lead to pessimistic results, since the 
effect of the hoop stress opposes the axial stress in deforming the cladding wall.  A positive hoop 
stress acting alone on the clad will cause it to expand in the radial direction, whereas a positive 
axial stress causes radial contraction of the clad. 

Consider a section of the cylindrical cladding as shown in Fig. 1a. The considerably simplifying 
mathematical-mechanical two-bar model as proposed by R. HIBBELER and T. MURA and 
shown in Fig. 1c assumes uniform stra? behavior of the cylindrical cladding by requiring the two 
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bars A and B, having equal cross-sectional areas, to be jointly attached to a fixed wall and 
weightless rigid bar guided by a roller mechanism. 

In Fig. lb, the stresses due to uniform pressure load and thermal gradient are shown.  The linear 
thermal stress distribution has been replaced by an average uniform stress distribution of 

EaDT
magnitude s t = .

4 1 ( - v) 
In this way the same magnitude of force F is preserved.  Besides inducing thermal stresses, the 
temperature gradient acting through the cladding thickness filters the mechanical properties of 
the cladding material.  For this reason the behavior of the cladding material at the outer region B 
of the clad, see Fig. 1a,  will be different from the material behavior  at the inner reg A.  The 
correspondence of the material behavior is preserved in the mode by requiring bars A and B to 
have material properties corresponding to the averaged materials properties in the regions A and 
B, respectively, of the cladding. 

Correspondence between the behavior of the cylindrical cladding and ? two-bar model requires 
that the initial stress distribution in the clad equation that of the model just after the initial 
temperature gradient is applied. With reference to Fig. 1b, this requires that we satisfy the 
equations: 

(initial cladding stress) = (initial model stress) 

pC R ECaDT W (aT)A - (aT )B+ = + E 
t 4 1 ( - v) 2A 2 

(3)


pC R 
+ 

ECaDT 
= 

W 
-

(aT)A - (aT )B E 
t 4 1 ( - v) 2A 2 

where 
A = cross-sectional area of each bar of the two-bar mechanism, 
W = loading on the two-bar model, 
subscripts A, B = reference to the members A, resp. B, 
subscript c = reference to cladding. 

The behavior of the cladding can in this way be represented by the two-bar model which is 
analyzed in the following to determine the ratchet growth of the cladding in the circumferential 
direction due to thermal cycling. 

3. Analysis of the Two-Bar Mechanism Using a Linear Steady-State Creep ? 

The creep law to be considered in this section is of the form 
ė = K(s -s ), (4)o 

where K and so are assumed known constants.  If so = 0, this equation would describe the 
secondary creep behavior of a material whose strain rate variation with stress is linear.  The 
constant so is included in the above creep law in order that the results of the linear analysis can 
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be used in place of an arbitrary creep law analysis, a method for which will be described later. 

The imposed temperature distribut~on in the members is shown in Fig?. 

First Part of the 1st cycle 

The following relations must be satisfied for the mechanism during the time period 0 < t < t
1
: 

WEquilibrium equation: s A + s B = (5)
A 

Compatibility equation: eA = e B (6)


Total Strain for each member: e =
s 

+ aT + e C (7)

E 

Steady-State Creep Law: ė C = K(s - sO ) (8) 

Taking the derivative of Eq. (7) and noting that (aT) and E are constants during the time period 
yields: 

ė = 
1 ds

+ K(s -s O ) . (9)
E dt 

Combining the equilibrium and compatibility equations, Eqs. (5,6), for the stress in member B, 
with Eq. (9) gives the following stress-time different equation 

ds B + C2Es B = (C3 + C4 )KAE (10)
dt 

where 
KA + KB W 1 KBsO B 

- KAsOAC2 = , C3 = , C4 = (10a)
2 2A 2 KA 

1
Solving this equation, using the initial condition sB = ,  at t 

CB1 

gives sB = 
C3 

C
+ 

2 

C4 KA + Á 
Ë 

Ê 

s 
1 

B 

-
C3 

C
+ 

2 

C4 KA 
˜ 
¯ 

ˆ e - C2Et , 

(11) 

where the superscript 1 refers to the first part of the temperature cycle. To determine the initial 
1 Cvalue use the strain relation at time t = 0. Noting that e = 0  we obtain 

sB1

1 1 

s A1 
s B1eA = + (aT)A, e B = + (aT)B ,

E E 
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From the equilibrium and compatibility relations, Eqs. (5,6), we get 

1 

s B1 = C1E + C3 

where 
(12) 

C1 = 
(aT )A - (aT )B 

2 

and C3 is defined by Eq. (10a).  Substituting Eq. (9) into Eq. (7), integrating, using the initial 
condition e CB = 0  at time t = 0 and simplifying yields 

e CB = 
C3 

C
-

2 

C5 KBKAt + 
C
K

2

B

E ÎÍ 
È 
s 

1 

B1 
-

C3 

C
+ 

2 

C4 KA ˙ 
˘(1- e - C2 Et ) (13)

˚ 


where 
sOA -

sOBC5 = . 
2 

In a similar manner it can be shown that 

e CA = 2KAC3t -
K
C

A

2 

t (C3KA + KBC3 ) -
C
K

2E
B 

ÎÍ 
È 
s 

1 

B1 
-

C3 

C
+ 

2 

C4 KA 
˚̇ 
˘(1- e -C2 Et ) (14) 

Substituting Eqs. (11, 13) into Eq. (7), and using Eq. (6) gives the total strain-time relation for 
the two-bar mechanism as 

e = 
C3 

C
+ 

2 

C4 K
E

A + 
E 
1 È 

ÎÍ
s 

1 

B1 
-

C3 

C
+ 

2 

C4 KA 

˘ 
˙̊ 

Ê
Á 
Ë
1-

K
C2 

B ˆ̃ 
¯ 
e -C2 Et + (aT)B 

(15) 

+ 
C3 - C5 KAKBt + 

KB È 1 
-

C3 + C4 KA 
˘ . 

C2 C2 E ÎÍ
s B1 C2 

˙̊ 

These established equations are valid only during the time period 0 < t < t1. When t = t1, the 
temperature in the members is suddenly change so that a jump in the stress distribution will 
occur. 

Second Part of the 1st Cycle 
During the second part of the 1st cycle the expression for total stra must include the previous 
inelastic creep strains that have developed in mechanism during the first part of the 1st cycle. 
Thus Eq. (7) becomes 

e =
s 

+ (aT )¢ + K ¢(s -s ¢O ) + Â e C . (16)
E¢ 
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The primed constants designate the material properties for the lower temperature part of the 
cycle, and the term SeC herein represents the in-elastic creep strain accumulated during the first 
part of the 1st cycle. These values of SeC are given from Eqs. (13, l4) for the time t = t1. 

The analysis used to describe the behavior of the mechanism during the second part of the 1st 
cycle, and for all further cycles, follows the procedure used for the first part of the 1st cycle.  The 
only difference is that all the inelastic creep strains that have occurred during the previous time 
periods have to be included when using the total strain equation. 

Assuming a constant loading on the mechanism  the relations which describe the behavior of the 
mechanism during the nth cycle are given below. 

First Part of the nth Cycle 

Stress 

sB = 
C3 + C4 KA + 

ÎÍ 
È 
s 

1 

Bn 
-

C3 + C4 KA ˙ 
˘ 
e -C2 Et (17)

C2 C2 ˚ 

Strain 

e = 
C3 

C
+ 

2 

C4 K
E

A + 
E 
1 

ÎÍ 
È 
s 

1 

Bn 
-

C3 

C
+ 

2 

C4 KA ˙̊ 

˘Á 
Ë 

Ê 
1-

C
K

2 

B ˜ 
¯ 
ˆ e - C2t +(aT)B + 

C3 

C
-

2 

C5 KAKBt 

KB È 1 C3 + C4 ˘ C3 - C5 C3 - C5¢ + 
C2 E ÎÍ

s Bn 
-

C2 
KA ˙̊ 

+ 
C2 

(n - 1)KAKBt1 + 
C2¢ 

(n -1)KA¢K ¢Bt2 

(18) 
+ 

C
K

2 

B

E (1 - e -C2t )
n
Â 
i=

-

1

1È 

ÎÍ
s 

1 

B -
C3 

C
+ 

2 

C4 KA 
˘ 

˚̇ 
+ 

C 
K
2¢E 

B 

¢ 
(1- e - C¢2Et 2 )

n

i 
Â
=

-

1

1 

n 

1È C3 + C4¢ ̆  

ÎÍ
sB -

C2¢ ˚̇
K ¢A . 

n 

Second Part of the nth Cycle 

Stress 

sB = 
C3 

C 
-

2¢ 

C4¢ KA¢ + 
ÎÍ 
È 
s 

1 

BN 
-

C3 

C 
+ 

2¢ 

C¢4 K ¢A 
˚̇ 
˘ 
e - C2¢ E t ¢ (19) 
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Strain 

e = 
C3 + C4¢ K ¢A + 

1 È 2 
-

C3 + C¢4 K ¢A 
˘ÊÁ1 - K ¢B ˜̂ e -C2¢E t ¢ + (aT )¢ B 

C2¢ E¢ E¢ ÎÍ
s Bn C2¢ ˙̊Ë C2¢ ¯ 

C3 - C5¢ KB¢ È 2 C3 + C4¢ ˘ C3 - C5+ 
C2¢ 

KA¢K ¢Bt + 
C2¢E¢ ÎÍ

s Bn 
-

C2¢ 
KA¢ ̇

˚ 
+ 

C2 
nKAKBt1 

(20) 
n 1 

+ 
C3 - C5¢ (n -1)KA¢K ¢Bt2 + 

KB (1- e - C2 Et1 ) Â
È 
s B1 

-
C3 + C4 KA 

˘ 

C2¢ C2 E i -1ÎÍ C2 
˙̊ 

+ 
C 
K 
2¢E 

¢B 

¢ 
(1- e - C¢2E t¢ 2 ) 

n

i 
Â
=

=

1

1 

È 

ÎÍ
s 

2 

Bi 
-

C3 

C 
+ 

2¢ 
C4¢ K ¢A 

˘ 
˙̊ 

. 

The initial stress values can be found from the following relations 

1 C3 + C4¢ E (1 - eC2¢ E t¢ 2 )(1- e -(n -1)g )
s B = K ¢An C2¢ E¢ (1- e -g ) 

+ 
C3 

C
+ 

2 

C4 KA 

(1 - e -C2Et 1 )
(
( 
1 
e -

-

C2

e 

¢ E t 

-

¢ 

g 

2 

)
)(1 - e(n-1)g ) 

(21a) 

(1 - e -ng ) - e -C2¢E t¢ 2 (1 - e -(n-1 )g )
+(C3 + C1E) (1 - e -g )

 , 

2 C3 + C4¢ (1 - e -C2¢ E t¢ 2 )(e - C2 Et1 )(1- e -(n-1)g )
s B = 

C2¢ 
K ¢A (1- e -g )n 

+ 
C3 + C4 E¢ K ¢A 

(1 - e -C2Et 1 )(1 - e - ng )
+ ( C1¢E¢)(1- e - ng ) - e -C2 Et1 (1 - e -(n-1 )g ) 

(21b)
C2 E (1 - e -g ) C3 (1 - e - g ) 

-
C

E 
3E¢ 

+ C1E¢ 
(1 - e -

( 

C

1

2Et

-

1 

e 
)(

-

1
g 

-

)
e - ng ) , 

where g = (C2 Et1 + C2¢E t¢ 2 ) .


From Eq. (20), with t = t we can def~ne the strain in the mechanism at the end of the nth cycle of

1 

temperature. Substituting in the initial stress values, Eq. (21), and simplifying, we obtain a 
closed form solution for the total accumulated strain d in the model at the end of the nth cycle. 
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n C3 - C5 n C3 - C5¢ aT + (aT 
dn =

( ) KAKBt1 +
( ) KA¢K ¢Bt1 +

( )A )B + 
C3 

C2 C2¢ 2 E¢ 

Á+
Ï 
Ì 
È 

ÎÍ 
C
E 

3 

¢ 
ÁÊ 

Ë 
K 
C 

A

2

¢ 
¢ 

- 1̃ˆ 
¯ 

+ 
K
C 

A

2¢E 
C4

¢ 
¢ 

- Ci 

˘ 
˙ 

-
È 

ÎÍ 
C
E 

3 
Ê 

Ë 
KA - 1̃ˆ 

¯ 
+ 

KAC4 - C1 
˘ 
˙ 

¸ 
(̋1 -e - C2¢ E t¢ 1 )Á

Ê 

Ë 
KB ˜̂ 

¯Ó ˚ C2 C2E ˚˛ C2 

-
Ê 

Ë 
Á K 

C 
B

2

¢ 

¢ 
ˆ 
¯ 
˜ (n -1)

(1
-

-

ne
e -

-

x

x

t

t

1

1 

)
+ 
2 

e -nxt1 

+ 
Ê 

Ë 
Á1-

K
C

B 

2 

ˆ 
¯ 
˜ 1

1 
-

-

e
e 

-

-

n

x

x

t

t

1

1 

+ 
È 

ÎÍ 
C
E 

3 Ê 

Ë 
Á K

C2 

A -1ˆ 
¯ 
˜ + 

K
C

A

2

C
E 

4 - C1 
˘ 

˚̇ 

(22) 

X 
È
(1 -e - C2Et1 )

Ë 
ÁÊ 
1 - KB 

¯ 
˜̂ 

+ e - C2 Et1 (1- e -C¢2E t¢ 1 )
Ë 
ÁÊ 
1 -

C 
K 

2

B

¢ 
¢ 
¯ 
˜̂ 
˙ 
˘1

1
-
-

e
e 

-nxt1

 ,
-xt1

ÎÍ C2 ˚ 

where x = (C2 E + C2¢E¢) . 

4. Influence of the Material Parameters on the Ratchetting Process 

Having developed the time-dependent stress and strain relations describing the ratchetting 
behavior in the two-bar mechanism for the nth cycle we are now in a position to discuss the 
influence of the loading and mate constants. 

For simplification, if we consider the above equations without a loading, i.e. p = 0; and with 
sO = sO¢ = (aT )¢ A = (aT)¢ B = 0 , and t1 = t2, Eqs. (17) – (21) reduce to a simplified form.  The 
stress behavior in membe then plots as that shown in Fig. 3.  After infinite temperature cycli the 
stress cycle reaches a steady-state cycle, whose initial stress values can be calculated from Eq. 
(21) for n Æ • . 

The magnitude of the jump in stress during temperature changes is dependent on the relative 
difference in the thermal strains in the material and is influenced by the difference in the elastic 
modulus, (E - E¢) and the initial stress values.  For E ª E¢ the magnitude of the jump J is 
simplified and becomes a constant value 

J = 
(aT )A - (aT)B E¢ . (23)

2 

From Eq. (22), we can find the lim dn. It is found that: 
nÆ• 

d Æ +• if K ¢A Ò 
KA (positive ratchetting) • K ¢B KB 

d Æ -• if K
K

A

B 

Ò 
K 
K 

¢A 

¢B 
(negative ratchetting)• 

d = 0 if KA = KB,KA¢ = K ¢B . (no growth)• 
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Recalling the form of the linear creep law used here, i.e. ė = Ks , and the fact that 
KA ÒKA¢ , KBÒKB¢ . The inequality condition for positive ratchetting for example, has the following 
interpretation: When the temperature gradient is imposed, causing compressive stresses in A and 
tensi stresses in B, we require that the relative creep rate of bar A to bar B be less than the 
relative creep rate when bar A is in tension and bar B is in compression. 

The strain behavior of the system ratchetting under thermal cycling and constant internal 
pressure pO given by Eqs. (l8) and (20) is illustrated in Fig. 4.  But when a fuel element is 
thermally cycled, it has to be assumed that fuel swelling and fission gas release occurs during the 
interval at which the temperature is changing.  Thus any increment of inter pressure loading on 
the mechanism would occur during the instant of rise fall of the temperature gradient.  The effect 
of this is to increase the slopes of the total strain curves which describe the behavior for each 
half-cycle. Thus the effect of load increase during cycling increases the incremental growth per 
cycle. 

If one considers a more general, non-linear creep law in the analysis rather than the linear creep 
analysis presented here, the observations made in regard to the stress and stress-jump behavior 
would be the same. The main difference lies in the fact that a non-linear analysis accounts for 
greater stress relaxation during the temperatures cycles. 
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Figure 1 
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Figure 2 

Figure 3


Figure 4
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