Summary of Important Flow-Induced Vibration Relations	
Moment of Inertia for a Cylinder	$I_x = \frac{\pi \left(d_0^2 - d_i^2 \right)}{64}$
Natural Frequency:	U 1
No Load (rads/sec)	$\omega_n = \frac{n^2 \pi^2}{l^2} \sqrt{\frac{EI}{m}}$
Load F (rads/sec)	$\omega_n = \frac{n^2 \pi^2}{l^2} \sqrt{\frac{EI}{m}} \sqrt{1 + \frac{Fl^2}{EI\pi^2 n^2}}$
Natural Frequency in Hertz (sec ⁻¹)	$f = \omega/2\pi$
Cross Flow: Single Tube	
Vortex Shedding	$S = \frac{f_{vs}d_o}{v}$
Turbulent Buffeting	$f_{ib} = \frac{v}{d_o x_i x_i} \left[3.05 \left(1 - \frac{1}{x_i} \right)^2 + 0.28 \right]$
Cross Flow: Tube Bundle	·
Jet Switching	$\frac{v}{f_{is}d_a} = 75$
Fluid-Elastic Instability	$\frac{v}{f_{fel}d_o} = K\sqrt{\frac{m\delta}{\rho d_o}}$
Acoustic Coupling	$f_{ac} = \frac{cn}{2w}$
Axial/Parallel Flow: Internal Flow	
Mean Flow	Lowers natural frequency Both near-field and far-field; These must be treated
Upstream Variations	stochastically
Internal Pendulum Motion	Creates low frequency vibration of control rods; Both static and dynamic instability exists
Axial/Parallel Flow: Internal Flow	
Same mechanisms as internal flow, minus pendul	lum motion
Fluid Damping	
General Equation	$m_o \frac{d^2 x}{dt^2} + C \frac{dx}{dt} + Kx = 0$
Critical Damping (K is the damping constant)	$C^* = 2\sqrt{Km}$
Critical Velocity Correlations for Major Vibra	ation Mechanisms
Fluid-Elastic Instability	$\frac{v}{fd_{-}} = 3.3\sqrt{\chi}$
Turbulent Buffeting	$fa_{o} = f_{n}d_{o}x_{t}x_{t} \left[3.05 \left(1 - \frac{1}{x_{t}} \right)^{2} + 0.28 \right]^{-1}$
Vortex Shedding	$v = \frac{1}{C_L \rho} \pi \sqrt{0.04 C_L \rho \delta n} f_n$
Equation Constant	$\chi = \frac{m\delta}{\rho d_o^2}$
Logarithmic Damping Constant	$\delta = 2\pi\zeta'$