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Beam Geometry and Notation: Consider a
beam with the beam axis in the z-direction
and with a constant cross sectional area
denoted by A. Paositions in A are denoted by
(x, y) coordinates; the origin (x, y) = (0, 0)
defines the beam axis.

If the beam axis goes through the geometric
centroid of A and if the beam is constructed
of a single elastic material, certain
simplifications occur. However, if multiple
materials are used to construct the beam,
and/or if creep/plasticity effects are present,
then the simplifications may not be
available. Any non-centroidal effects are
incorporated directly in the equations used
here.

The x,y,z coordinates denote positions fixed

in the unstressed beam at the reference
temperature (zero er),

The displacements of a point on the beam axis relative to the
reference state are denoted by (u, v, w) in the (x, y, z) directions,
respectively. Thus (u, v ,w) are functions of z.

Figure 1: Coordinate System
and Beam Geometry
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The displacements of points on the beam axis are defined by 4
u

giving the following quantities as a function of z:

u the x-direction displacement (m);

Figure 2: Slope
of Beam Axis

6, the slope (radians) of the beam axis (a small rotation
that can be represented by a vector parallel to the y-axis); and

k, the curvature (1/m) of the beam axis (the reciprocal of the radius of curvature) in the

plane normal to the y-axis.

A positive sign for curvature (k,) and for displacement (u) are indicated in Figure 3. The
equality of the reciprocal of k, and the radius of curvature is also shown schematically.

Symbols for forces and moments are also defined, as follows:

f, the external load in the positive x-direction per unit axial length (N/m);

V., the shear force (N) on a positive face that has a normal in the z-direction (with a

positive sign illustrated in Figure 4);
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My, a moment (N-m)
about an axis in the
y-direction that
passes through the
beam axis on a
positive face (a
positive sign for the
moment is illustrated
in Figures 3 and 4);
and

F, an axial force (N) in
the z-direction
(acting on a positive

b4 z face).

Figure 3: Sign Conventions
(a positive sign is illustrated)

Force-Deformation (force-defo): Consider a case in which

the predominant stresses are normal stresses that lie in f

the z-direction. Then the z-direction tensile strain is: X CFFF [ L
1

€z = EUZ + €20 (1)
where effects of o, and oy are neglected; and where g, is Vi My
the strain in the z direction that would exist if, locally, o,
went to zero. Contributors to g, include thermal strain
(e7), mechanical strain (gm); from plasticity and creep, and

strains (eq4), from other deformation mechanisms (such as Figure 4: Forces and Moments
radiation swelling and radiation growth):
€z0 = EeT + (Em)z 3 (Ed)z . (2)

The terms E, e, (em)z, @nd (gq). in Eqs 1 and 2 are evaluated for the local material, for the
local temperature, and for the local creep/plastic/irradiation history at the particular (x, y, z)
position of interest.

Deformation-Displacement (defo-displ): Beam displacements’ are defined by giving u and w as
a function of z. The additional deformation and displacement measures (slope (8,), curvature
(k,), and axial strain at the beam axis (¢.a)) are obtained as follows, on a small slope and small

' If the beam axis is also displaced in the y-direction, then additional equations must be

solved. For the present development, it is assumed that v =0.
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curvature basis (these equations also require the assumption that the beam is slender; if thick
beams are encountered, then shear deformations may also be important):

_ du

ey = dz 3 (3)
dey

= — :and 4

ky dz ( )
dw

= — . 5

Eza dz (5)

A next step is to invoke the fundamental assumption of beam theory (Popov, Ref. P-1, page
122), that "each plane section that is normal to the beam axis in the original reference state is
also plane and normal to the beam axis in later deformed states." This assumption is satisfied
if (in treating strains at a given axial position in the case of curvature represented by a vector
parallel to the y axis):

Ez = Eza ~ kyx . (6)

Equilibrium (egm): Force measures in the beam are the moment M,, the shear force V,, and
the axial force F,. Equations of statics are (see Figure 4):

Vx - . fy ,and (7)

dz

dM

—L = . Vx . (8)

dz

The force measures are related to the stresses in the z-direction as follows:

F, = Icsz - and (9)
A

My = - [o.x dA. (10)
A

Discussion: Consider that the quantities f,, F,, and ¢,, are known. Two boundary conditions
must also be supplied at each end of the beam (to give information about u or 8, or M, or V, at
each location. One statement about axial displacements is also needed (e.g., w=0atz=0).
Note that other combinations of input may also provide well posed problems.
The solution may be thought of in the following way:

integrate Eq (7) to obtain V,;

integrate Eq (8) to obtain M,;

combine Egs (1), (6), (9) and (10) to obtain a relation between M, and k,;

integrate the k, relation using Eq (4) to obtain 6,; and
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integrate Eq (3) to obtain u.

In performing these steps, the boundary conditions and the strain relations of Eqs (1) and (6)
must be satisfied.

The equations may be simplified by noting that:

J’ xdA=0 |, (11)
A
if the beam axis is centroidal with respect to the cross-sectional area and the y-axis; and
Iy = j x? dA (12)
A

may be used to define the symbol ly (the area moment of inertia about the y-axis).

Reference:

P-1  E.P. Popov, "Mechanics of Materials," 2nd ed., S| version, Prentice- Hall, Englewood
Cliffs, NJ, 1978.
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