
21.1. OBOMETRY OFSHELLS OFREVOLUTION 

Most prwsurc versela are shslb of revolution. ie. spbm, cyh-
ders, cones. etc. Such a mrhsisobtained by rota- a plane ourvb 
about an axin lying in thephc ofthe ourra Figure2.I I o w a tbs 
c u n c , d l e d t b s ~ . A t a p o i n t P t h s ~ o f ~ t P m o f t h o  

m d i b  i s r ~ a a d t h e d m & o f ~ r ~ i ntho p h n ~ o P P ~ . 2 . 1  
L d e d a p m d d d h k mThwan dement ofrhall(r~IIIBXndp)fs 
cut by fwomcrId&nsandtwa ~~. U P i s ~ a o m d t o  
tbh d m t  ofshell and obviody nL one radiua ofEwiacipalm-
turs.Thosaxrnd r a d I ~ ~ o f ~ ~ t u r o n s q t m & O P d o c o  
by coasidsring two adjlosllt pohta on the puallsl eirels at P, the 

n o d  from thew pohts wil l  intersect tho axb of rotation at 0. 
From Fig 2.1 wo obtain 

r.=rlSinp (2.La) 
c l r o = d f w p l  (2.1 b) 

and ds-= rr dP Cz.1~1 
f m  w h h  

b e
-=n-9'4 (221 

P I 3  EQUATIONS OFE Q w OF OFRBVOLVflON 
Coddm an sfsmmt r, I X r , dp of the.shsllof revolution. Figrua 

2 ~ ~ ~ ' ~ d ~ s c t a a d r b t s r ~ r a s a l t a n t s i n t h s ~ l a a e o f t h s ~  
&cs of the &an and also the tmmm shear rtnss resultants. Figure 



2.3 shows the bending and twisting moments on the elomant. W 
streas remltanfs are ~hownin the podtiyo directions, the right-hand 
sclcew rule being used for tbe moments inFi.2.3. The oxhrnal forces 
on the shell element arep,, p, q per wit  ama of shell and arc shown 
in Fig. 2.3. 

A41 iS wual in thin shell mdysis we ignore all stmaw n o d  to 
' 

the shell imfam as being negligiblesince they 8ia small, and the equa-
tions of equilibrium ignore all changes in shape of the 8hd due to 
the loads. The detailed ~tepsfor the dsrivation of the cqwtio~18of 
equilibrium are given in various tmxtbooke [2.1-4]. 
By resolving and taking moments for the element, the six equations 

are: 

B NO- +rl -+FIN& cos p - ~ Q usin p+rorus = 0 (2.3b)
00 

r f l e c - r f iNN -nMe sin gi+&@ = 0 (2.3f) 

If the loading ia rotationally B#; i.e, i f p e  =0 then clearly 
Q,=NB,=N# = M,,- = 0 and N,and Maare independent 
of 0. The equations ofequilr'brium then take the form: 

E f i a t h g  Nu from (2.48) and (2.4b) we obtain ' 

d di.e. -(rap& sin pl+-(r&#d~ cm pl)+ra~lp,sin gr -p, cos 01)= 0 

Therefore 
%troNP pr+r&, COS TI 5 2n r#i(pr cospl-pl pl) dpl 

=P,the total load on the shcll (2.4d) 
above the parallel circle. 

Tbisisa very asefpf but not independentequation ofequilibrium and it 
f o h  obviousfy from Fig. 2.4. 
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2.1.3. 	STRAINS AND DISPLACBMEEPTS IN SHELLS OF 
REVOLUTION 

Now consider the deformations of the shell of revolution 'and 
the consequent direct and shear strains, changes of curvature and 
twist. We make the assumption that during deformation the normals 
to the middle surface of the shell remain straight and normal to the 
deformed middle surface and undergo no change of length. 

A point P in the middle surface of the shell with coordinates 8, pl 

has displacements u, v, w (assumed small) as shown in the positive 
directions in Fig. 2.5. 

The strains of the middle surface in the circumferential and meri-
dional directions are e, and ev and there wjII be a shear strain ye, 
in the plane of the shell. It is shown for example in I2.11 that 

If we pro~eededwith strict rigour at this point and followed an 
accurate analysis, see [2.1], we wouId proceed to find the values of go,, 
Eq,T8srat a distance z from the middle surface(i-e.in the direction ofthe 
shtU thickness)and tbe further anaIysis of the shell probiem would use 
these strains and Hooke's law to derive the stresses at a distance z from 
the middIc surface. These stresses wouId be integrated over the cross-
section of fhe shell dement to derive the stress resultants No,IV,, NM, 
I fM,  Mb, Mq,M&,M#. Became the shell element has a cross-section 
which is trapezoidal we would find that although the shear stress 

ZOP= t# =-
2(l + v )  

y,, 
-

at a distance z from the middle surface, the 

integrations would give N+ # N,, and Mw g Mp 
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There would appear to be very few, if any, pressure vessel problems 
for whicb this rigorous analysis is required and we now take an en-
ginaering viewpoint and give the changes of curvature ~c,and x, and 
the twist +in terms of u, a, w. 

In these equations F l u e  [2.1]suggests a simple form omitting the 
tcrmrr in u and o. Tba form ginn here are the m e  as those given by 
Kraus [2.4]. 

Other forms of the expression for % are given in the literature and 
there has been considerable discussion of their accuracy. Koiter I2.51 
discusses this p s o b b .  
Wc also defme V the angular rotation of a tangent to the meridian 

which is ofgreat use in sdving boundary conditions in pressurevessel 
probiems: 

This is a rotation in an anticlockwise direction in Fig. 2.5. 

BASIC Pm-

21.4. ELASTICANALYSIS OF SHELLS OFREVOLUTION 

If we now consider the shell of revolution for an elastic mat.& 
which obeys Hooke's law, we cm derive reIationships between the 
stress resultants md the strains and changes ofmature. 

Using equations (2.5) the directand shear strains go, Ev T& at a dis-
tance z from the middlesurface me given by: 

where e L positive in the diTdon of the outward n o d .  
Using Hooke's law and inc1uding the tffext of temperature, T,we 

ham: 
ue& =---
B ;-to (2.8a) 

where a is the co&cient of linear expansion. SoIving for the messes: 

and the stress multants are: 



where h is the &hella e s s .  

The minus signa in the expressions for bending momwt and torsion 
arise from the sign conventions of theso quantities wed in the eqai-
librium equations. 
As referred to previody, in deriving these qmim we baw 

ignored the fact that the shell element has s i b  whicb are trap#oidal 
and haw not calculated p&ly th atrains at a dhtmce z from the 
middle surface. It is for these aasm hiwo obhh NBC= N* and 
M+ = Me M y ,  therefom, these sbess resuItants can never saw 
the equilibrium equation (2.30 ndws rl =r* but this ia an amptable 
sitnation in an engineering problem since only a very sfJght change of 
the valnes of the shear force and twist is needed l2.11 to aids@ the 
equation. Had we carried out an exact aaalysia wewonId have found 
that equation (2.3f) would bs i d e n m y  satisfied. 

BASIC PRWCLP298 

If we substitute for E@, E+., yW ~ g ,xp X+ equations (2.5) into equa-
tions (2.10) we have six equations reIating the stress resultants and the 
dhplamnents. We also have six equations of equilibrium (2.31,but 
ignoring equation (2.3f) ap discussed above, we have finalIy a total of 
11equationsfor 11a n k n m s N , ,  N, Nw Ma,M, Mw Q,,Q, u, a, w, 
and hence the general problem of the elastic shell ofrevolutian may in 
principIe be soIvOa 

21.5. MBMBRANB SOLUTIONS FOR SHELLS OF REVOLUTION 

Membrane aolutions to shell problems arc of great technological 
importance. Apart from the obviow £act that to carry loads by direct 
stress with no bending s t . is an economic us8 ofmaterial, it will 
be seen thst tbe combination of locaI edge bending aolutions with 
membrane solutions is one ofthe important technique3 in the analysis 
of pressare vessel problems. 

Forthemembmetheory we put M,= M,= M,,= M,,= Ointhe 
equations of equilibrium (2.3)and hence from (2.3d)and (2.3e) we 8e.e 

that =a=0. The equations of the membranetheory are therefore 

rlNdsin pl+rONq-prro~l= 0 (2.11~) 

Nb-N, = 0 (2.1Id) 

Using the geometric relation (2.1) equation (2.11~)is 

For rotationally symmetric loading, p, =N,,=Nfl=0 and equaiion 
:(2.11a) is not tho most useful form. An dttrnative form follaws from 



(2.4d) with $=0, i.e. 

2qN''sinp = P  

where P ip the sum of all the nxtcmalforces applied to the shell abovo 
~praIldcide. 
To 6nd the membrane solutions for a shell ofrevolutionwe see that 

the four equations (2.1 1) have four mhowlls.Flaw [2.1] and Kmus 
[2.4] set up general equations for the case w h o  p, pe, p, can bo ex-
pressed in Fourier series form and give examples for tho casa of a 
spherimil shell. They a h  consider the hornogenw)us ~olutionfor the 
sphere,i.e.p, =p, =p, =0 compandingtoedge loads andpointIoords 
only. These hamogtneoua solutions am givcn in Chap& 3 as part of 
a g e n d  treatment of a 8phericaI shell. For rotationally m c 
loading such as pressure, sew-weight and fluid weight Fliiggu I2.11 and 
Krana [2.4] give typicaf solutions. 
In applying the membrane theory ofshells it is importanttomots the 

conditions under which the membrane solution is pssiile and the con-
ditions under which bending .&me8 are rn essentialpart of the &ass 
system. When we refer to a "boundary" of the &ell in the folluwhg 
discussionwe are referringto a parallelM e  which in practice is often 
the junction of two pa& ofa wsel e-g. cylinder and end clomm. It 
can also refer to the case for m p l e  of a sphtrical vezwel on a skirt 
support, the support f i e  being the boundary for both the shell a h 
and below the suppoxt line. 

boundary. The boundary conditions on disphcements must not 
ratrain these displacements and robdons so as to require shear 
forcesnormal to the shell and bending moments. 

(3) The membrane eolution is not an acceptable solution for wn-
centrated form normal to the d a c e  of the shell since shear 
form and bending moments are a necessary part ofthe complete 
soIution. 

(4) Wesee that if we evaluateu, v, w as explained in (2) above and 
wbtitute these in 12-54 e, f) there wilt in general be values of 
%, x, %.When these are substituted in (2.IOd, e, f )  we obtain 
valuea of Mo,Mp,Mw wbich were considered to be zero when 
we set up the equation of the membrane theory. If the shell is 
thin and hence h a small bending stiflness or when the changes 
of m t a r eare small, the vaIues ofthe moments are small and 
may be neglected in an enginetring theory and the solution of 
many practical problems. However, there are certain cases, of 
which the tomidd shell of certain proportions is a well-known 
example, where a membrane so1utidn is completely unacceptable 
because ofthis effect and it is found that bending moments and 
shear forces are essentialparts of the stress system. 

2a1.6. BENDNO AND EDGE BENDING 
£-betoconditionsimportantThe FOR SHELLS OF REVOLUTIONfor the membrane solution S O L ~ o ~  

arc: At the end ofsection 2.1-4 it was stated that the general problem o f  
the shell of revolntionsubjected to non-rotationally symmetric loading

(1) At any boundary the reactionsmust be in the meddionaltangent 
c o d  be solvedfrom 11 equations for 11 unknowns, but clearly a solu-plane. Otherwise shear forces andbending momenta are necessary 

for equilibrium. tion wonId be of great mathematical complexity and in general a solu-
tion mnfdonly be possible by numerical computm analysis.

the dmofN~, iVb for the membrane s o h -(2) Ifwe ~nMtnte  Ng, H m ,for the case of the sphericaI shell the problem can be 
tion into equations (2.10% b, c) and #,,,+,ofvaluesthensa y,, solved analyti011Uyand the ~olutionip given at the beginning ofChap-
to derive the displacements tt, q w from equations (2.54 b, c) ter 3. The sohtiw presented there is valid for all val11ts of p and for 
these displacements wilI have ptvticular valnea at the bwndary 
and associated with them will ba rotations and *at tha 

any non-rotatiody symmetric loading. FIiigge 12.11 considers the 
spherical shell w e  in a manner similorr to Havers I2.q. He also can-



siders the edge bending salutions under non-rotationally symmetric 
edge loads for c o n i dshells.M e I2.q obtained solutionsfor spheres 
for b e t r i c  loadingandalso for the b tharmonicloading. Leckie 
and Penny 12.81solved theproblemfor higherharmoniw and compared 
these solutions with various approximate solatious. 

For the general shell of revolution, we now restrict our attention 
to rotationally symmetric loading and use equations (2.4), (2.9, and 
(2.10). 

The solution reduces to two equations: 

where U = r& 

1 dwV = ( - from equation (2.6) 

the constant depending on the externalloading at the shell edges. 

From the wlm o f  U and Y.fromthese equations we obtain the follow-
ing oxpwions for the stress resultants: 

U R
N, = --cot$?--casectp 
ra ro 

from equation (2.4d) 

&=---1 d U+-R ooaec8rl,t p , r o cosec gr (2.15b)
Fl d.p rr. 

from equation (2.4b) 

from (2.10d, e), (2.54 e) and (26). 
In ~~tablhhingcompatibility conditions at the junction of the two 

~h& wa require V,the rotation of the tangent to the meridian and 
also &, tha defkdon at ,rightanglm to the axis of symmetry, i.e. the 
increase in radius ofa paraIIel cirde 

and R = 1rrrr shvlp, sin v-p, cos p] &+constant 



In [2.9] a version d equations (2.14) is given which applies not only 
for the elastic case but alsa when plasticity and creep are present. Zn 
these w e ,  tbe terms P and G contain te rn  dependent on the current 
plastic strains. 

Rigorow solutions to equations (2.14) can rarely be obtained and 
they involve complex mathematical analysis. A large amount of work 

.on the numerical solution ofthese equations inwhich al l  the terms are 
included has been done and the work is reviewed in Chapter 8. The 
solution of the equations for creep is discussed in Cbapkr 10. 

Equations (2.14) include the terms F and G on the right-hand side 
due to the applied loads and temperature. If we put p, =p, =0 and 
consides a uniform temperature, then F = G E 0 m'd the sohtions to 
equations (2.14) are the edge bending solutions. They are t h ~ ~solu-
dons for a shell of revolution subject to forces and moments unifody 
distributed along a parallel circIe. 

These edge bending solutions are of great importance in pressure 
vessel problems. We have pointed out in section 2.1.5 that membrane 
solutions cannot always satisfy the boundary cunditions. By applybg 
self-equilibrating f o m  and bending moment3 at the boundary of a 
shell together with the membrane solutions we can satisfy the boundary 
conditions of equilibrium and compatibility of displacemeat and rota-
tion. We mention again here that by a Ubo~ndary"in thh context we 
often mean the junction of a c y l i n M  vesel and the a d  closure or 
the junctionof the top and bottom parts d say a qherical vessel at a 
skirt support. 

Tn order to illustrate the nature ofedge bending soluti0118and their 
use in eatisfying boundary conditions we will consider the simplest 
form ofsolution applied to a very simple problem. 

Putting P =G = O in equations (2.14) with a uniform temperature 
for a shtll of constant tbickuess and constant Young's modulus, the 
equations may be written: 

Q.17a) 

Now for the caseof a spherical shell for which r, = rp = R, say, equa-
tions 12.17) may be written (using T for the thickness of the sphere) 

Edge bending soIutions are of a damped o s ~ t o r ycharacter and if 
the shell is thin, tbe damping is very rapid. Hence we may assume that 
the second derivatives of and V are large compared with the first 
derivative.^ and and V themseIves and we replace equation (2.I @ by 

We note, howar&, that i.equations (2.18) Q, and Y on theleft-hand 
side arb multiplied by cotsp and the fist derivatives are multiplied by 
cot F.ItfoUows,therefore, that this~ppmxLnationwill notbe valid i f r p  
is small and hence wt p large. For the approximation to be valid we 
should have p a 30". 

Equation (2.19) gives 

where 

for which thegeneral solntionis 



where four arbitrary constants arc available to satisfy the boundary 
conditions. 

Having obtainedQ, =can p r d  to h d  all tbeother streasresult-
anis, strains, disp1acements from ourprevious equations as for equa-
tions (2.15). 

From (2.4d) 

NP=-Q,COtqJ 


The equilibrium equation (2.4b) for a sphere where 

From (2.19). 

and from (2.1 5c and d) 
VD dYM,=-
J? * 

where again we neglect V wmparedwith dV/dpwhich is satisfactory if 
cot g,is a m d l  (i.e.gr =- 30"). 

Finally, we o h requite the =did dhphcemenb oftho edge of a she1 
which is the =did &placement ofaparallel circle. 
We obtain (from (2.15)) 

again neglecting Qv in comparison with 

We must mphask that these simple solutions are only valid for 
thin shells for pl z 30".A full treatment of edge beading solutions is 
given. ia Chapter 3 where it may be noted that the HeEnyi solutions, 
equations (3.441 which are valid for the rotationally symmetric case 
and for the fist harmonic loading (i.e. n =0 and n = I) are similar in 
form to eqoation (2.20) divided by l/(sin p). They are quite amrate 
when 4Q)wpz- 6. 
Inseetion22we consider the shaUow shell equationsgiving soIutions 

when rp ismall. AI1 these differentsolutions are used where approp&tte 
in solvingpressure wage1probIem$ but it should be noted that the solu-
tiom given at thebeginahg ofChapter3 arevalid for all values of p. 

R&unhtg to the general solution (2.20) consider the example shown 
in Fig. 2.6 fora sphericalcap ofaaglerrcwith a momentMa and outward 
forcaI7appliedto the bottom dge. 

For this case Aa and A4 must be zero since as p away from 
theudge, the edgeeffects aredampedout and hence terms involvings'w 
are omitted. 

Changing the variabla and using rp = (a-9)) equation (2.20) can be 
written JZ, 3 14e-llp sin (w+y). The boundary conditions at p =a, 
i.e. gp = 0, ara: 

Ths complete solution b given in Table 2.1. The table ahom the two 
cases where Hand iW,are applied to the bottom edge srs in Fig. 2.6 or 
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UsingNr,Mr,Map,Q,,p, instead of N,,Mp,Mb,Q,, p, and noting 
in equation (2.3) for a sphere that r~= rn= R,the equilibrium equa-
tions are : 

a awe r
F ( r N r ) + ~ - N u - - Q r + r p r  = (221a)R 0 

wherep is now used for the radial, i.e. internal, pressure, 

BASIC PRlNClPLES 

Thestrain-displacement equations (2.5)become 

With the appropriatechange of notation (i.e. pltor)equations (2.10a-
f) are still applicable. 

For rotationally symmetricedge Ioading and constanttemperature we 
put p, = p =p, = 0 and we can introduce a stress function F such that 

N,=-a v  N,=-- which sntisfim (2.2la) if we ignore the term 
ap r ar 

Qr which is negligible for shallow shells.
R 


We obtain two equations in wand F 

where 

which are the equations of the problem of a shallow spherical shell of 
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constant thichesa subject to forces and moments uniformly distributed 
along a parallel cirole. 
The solution is: 

r -Aa ker --+As log
I 

where I = I/(RT) 
.Z/tl2(1-v2)1 

The functions ber, h i ,  ker, kei are Kelvin fmctions [2.11] of mgu-
ment 

where 

Ngand N,are derived from F as given above and we also bave: 

Since all quantities are functions of@ it followsP.121that the stress 
concentration factor due to internalpress~reat an &ford hole of 
radius r~in a sphericaIvessel ofradmsR and thicknew Tis afwction of 

BASICPRINCIPLES 

This is extremely useful, since in this problem the geomprlrical para-
meters of the stnrctuream given by ro/R and RIT and the fact that the 
dirnension1e.s~group.p~combiaes these two ratios is of great value in 
plotting muIh. Reference [2.123 uses this group in plotting stms con-
cenfration factors for nozzles in spheres. See also Chapter 3. 

2.3. Cylindrical Shells 

Thecircularcylinder is obvioasIy a surfaceofrevolution but -use 
of its imporhce in pressure vessel work the relevant equations and 
principles of analysis are now stated independently. 

23.1. 	EQUATIONS OF EQUILlBRIUM FOR CYLINDRICAL 
SWBLLS 

For the generalcase ofasymmetricloading the shell element oFIcngth 
dr and width r-68 has the stress resultants shown inFigs. 2.9 and 2.10 
the directions shown being taken as positive. 
The&tailed stepsare givem in I2.11,[2.21 and Iead to the equilibrium 

equations:, 
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the eauations are: 

a*
r-f NO-rp, = 0
dr 

and the membrane solution for rotationally symmetric loading with 
M*= Q, = 0 is trivially obtained. 

Fat. 2s 2.3.2, STRAINS AND DISPLACEMENTS 
IN CYLINDRICAL SHELLS 

Ifthe displacementsof the mid-surfaceofthe shell are u,er, w, defined 
aspositive in thedirections shown in Fig. 2.11, then the strains, curva-
turear and twists are given by [2.4]: 

ma. 2.10 

- For the membrane solution only wehave Mo=Mx=M, =M,,=0 

and hence Qx = Qg= 0. 


Tf the loading is rotationally symmetric then p, = 0 and N, = I aaBw aer
&=- ---
N,, = M, = Mfl== Q, = 0 and Moand N,are independent of B and r [ a x a s  ax] 
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Consider a cylindrical sheJl made ofan elastic material which obeys 
Hooke's Jaw. 
If the strains at a &tan= z (+w in M a n  of outward normal) 

from the middle surface are ifa, &,7+ then 

Using Hooke'g law as for the shell of revolution we obtain equations 
similarto (2.8), (2.9), (2.10) rephchg cp by x in those equations. 

Omitting the temperature terms, we obtain: 

BASIC PPlNCIPLEd 

Now, following the arguments given by Kraw [2.4] we can drop the 
terms in w in the expreseions for x, and x,,, ignore the effect of Q, in 
eqnation (2.24b)and ignore equation (2.240 for the reasons previously 
discussed in connectionwith general shells of revo1u:ion. 
We can mbstitutethe expresshmforthe stressresultants in thmsof 

u,u, w in the equations of equilibriumandobtain(for the case of uniform 
telnpcruture): 

Thebe equations give the complete solution to the cyhdrical shell prob-
lem under loading p, p,, p, with the appropriatebonndary conditions. 

mations (2.28) may also bt written, and are often ghm in various 
papers, in the form (forp, =pa =px = 0) 

where 

These are known as the Donuel[ equations r2.131. The compondhg 
equations for the case with surface loads and -peratme are given by 
K m s  12.41who &o dipcussm the aaumcy of the equations. 
In 12.141 Morley gives an alternative set of equations. Although the 



THE STRESS ANALYSLG OF PRESSURE YESSELS 

only differencefrom equations (239)is in the &st term ofthe firstqua-
tion, they are considerably more reliable [2.4]. 
In Chapter 5 the Donnell equations arewed and the corresponding 

expressions for the stress resultantsin t ern  of u,u, w, me given. 

2.3.4. EDC)8 SOLUTIONS FOR C'YLWDRICAL S m L U  

I fweapply s m s  resu1tant.sata p h c  x =constant of acircular cylin-
der with p, =pa =g, = 0, the prccedum g i m  by Hoff 12.151 may be 
used. 

Hoff puts 

in equations (2.28) and obtains: 

w = a ~ ( ~ w a ~ + g S i . -
cas Ill9 r"1 

where 

and 


Corresponding expressionsfor u, v and all the stress resultants aregiven 
by Hoff. Graphs of- a,e,p, are given as functions of rJtfor vdum 
0fFlfrDm 1to 10. 

There is, however, one important point about the strw resultants at 
theboundary x =cmmbnt which should be noted: 

Fig. 2.12(a)shows apart of the cylinder cross-section at x = constant 
(a boundary), The s t r e ~ sresultants on this section are N,,Ms Q,,N,, 

(e l  

Md, whereas we f i d  that there are only four constants of integration 
avaiIable. The thrce resultants Q,, lVm M& are equivalent to h e  com-
bined action of T,and S, in Fig. 2.12(4. RepIace MM by forces P, as 
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shown whm P,ds = M, dP (Fig. 2.12(b)). These forces ham a tan-
gential resultant P,dB =P, say, so tbat we s~ that the forces as 
shown in Fig. 2.12(b) are statically equivalent to M+ We are saying 
here that P, and P,are statically equivalent to the shear strases which 
produce Ed;, but this is by igaoring local s t m s  problems within the 
shell thickness which are not considered in thin shell theory. 

By considering two adjacent elements and adding NM and Q, we 
see that the final resultants of Fig. 2.12(0) are 

Similarly 

S, ds = Q,dsf -apt, -dd = Q, d ~ + -aria, *dBae ae 

Hafl gives expressions for thest quantities 12.151. 
Returning to equation (2.30) for the parti& cam when n = 1, 

it is noted by Bailey and Hicks i2.f6] that $hoe1is large (=-4 say in 
many practical cases) then P + 11/A end a1 +-& + 1, and rn + 

+ l/U. Thus a1 is much greater than &r BO that any change in the 
radHI deflections or stresses with x is due more or less entirely to 

.terms containinga1 and hence for n = 1 wemay write 

BASIC PEUNCIPLES 

NOWcunsider the much simpler case ofa circular oyIinder subjected 
to 	rotationally symmetric edge loads. 

It is easiest to start from first principles. 
We have 

W 

se =-

r 

For no external loads, i.e, p, = 0,N, = 0, 

we have 

and substituting in the equilibrium equaiion 

we obtain 

where 

Thh is the merentid equation for a circular cylinder subjected to 
rotationallysymmetric edge loading. The solution is: 

Comparing (2.33) and (2.34) we note that ;Iir = j and hence the 
equations for W ~ C O SB when n = 1 and w when n = 0 are the same. 
This is similar to the situation for spheres where the H d n y i  solutions 
(see Chapter 3) are valid for rt = 0 and n = 1. Consider an infinitely 
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long cylinder (Fig. 213) subjected to rotationally symmetric edge shear 
QOand edge moment Moas shown in thc figwe, giving a radial d d e e  
tion wo and a slope &. All quantities shown in the 6gare are positive. 
Note that due to Ma and Qo it is obvious that 86 will be negstiw. 

Because the cylinder is long, the co&&ts . k ~and ks of terms 
containing & must be zero and equation (234) becornea 

w = e-M(ka cosbxtRc sin Px) 

1 
I I O r i ~ m 1"nddlected , wall of cylinder -

Fro. 2.13 

and the constants ka and kr may be evaluated to suit the boundary 
conditions at the free edge. Now we wi l l  d e e  four ussfid functions: 

Graph of these fm&s are shown in Fk.2.14. 
From the Qure it is evident tb.ifor fix =%the V&W of these 

quantities are ne#gible. 

c-e PID44 
I 2 3 4 5 

It foliows, therefore, that tbe effect of edge disturban- on a cylin-
dricalpresswe vessel are negligible when 

e.g. ffor a j-fppt vessel ;inch Shickc x >9.5 i s ~ h q ,and this 
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TABU22 EWESOWITDM POR 

Deflected
End wndition 

is our justification for neglecting the coeEtcimts of dAr in equation 
(2.34) to obtain equation (2.35). 

For a cylinder whose length I gives 81 4z the edge distnrbanm at 
the lwo ends will interfere with one another and a complete solution 
involves using equation (2.34) and evaluating aII four constants of 

BASIC PRINCIPLES 

L o ~ oCYLWDRI~ALSHELL 

Longitudinal Longitudinal Remarks 

b.m./uait width s.f./unit width 

-	 ,- --

Qo rv, and 0, fot~ndby putting x = 0 in--
B 

Bh Qocp expressions fur deflection and slope. 

wo and 0, found by putting x = 0 in
J'fdaz - Z ~ M o B b  expressions for deflection and slope. 

Required edge for-

w& -kw*-- c, p DB"28" 


b'. kvr,a,-+- M . = - ~ p 2B 

Fleqvlrad me l o w  

--	8& 'ok A 

@a Dl- 2By Bz 

M0 


kA0 p,,, =-k9,Qo=+-
2b2 2b3 

Ah Bm Cg., Dm as defined in equation (2.36). 

integrationfor the edge conditions. These are considered in great detail 
by Hethyi [2.17]. 

Table 2.2 shows solutions of equation (2.35)for the various possible 
boundary conditions for a semi-infinite cylinder. 

The membrane stresses due to internal pressure, i.e. pr/t  and pr121, 



For the sphere fmm Table 2.1 putting a = 4 2  
2x9M %TQ&=---

Et Et 

Note that 

For equality of slope: 
e, = 9, 

Noting that k =M/P and puttiag n = &3(1 -rql 

Also for equality ofdeflections: . 
ar+al, = as+nh 

'T'= 
#S 2pB -~Q[E+$]Therefore 2tE Z M [ ~ - ~ ]  

We thus have two equations for M and Q and ~Iv ingwe obtain 
M = O  

It is interesting and important to note that the damping co&&tg 
IS, x for the cyIinder and sphere arc effectiveIy theme. 

This now gives us the wmpletG ~ lut ionfor thisjunction provided of---
course that the cylinder is sufficiently long su that there is no interfer-
ence from any discontinuity stresses at the other end of the cylinder. 

BASIC Pmwm 

Finally the stresses are the dgcebraic som of the membrane stresses 
and the stresses due to the &continuity force Q.Expressions for the 
stressep. due to Q are found from Tables 2.1 and 2.2. 

For the cjrIMer 

r r k 

M,--7
Q Bm=-- P 

spa Bp" 
MS= 

The top sign applies to the outer surface. 

For the sphere (from Table 2.1) 

N8= + x 4 2 ( f l * Q ) e - ~ s i n  



~ r t -

Cimumfvrmtial s t r w a$ +-. 1 i-
Sphero --Cylinder- x  

I I I**+ I 0 I 2 a* To these stresses we add the membrane stresses and the find results 
are shown in Fig. 2.16. 

One final point about the junction of two shells of different geometry 
is most easily explained by considering the junction of a cylinder and 
part of a sphere as shown in Fig.2.17a. This would clearly be an 
extremely bad dwign for a pressure vessel, but it illustrates an im-
portant point which arises in the analysis of branches in spherical 
vesseIs. 

If the vessel is under internal pressure then the membrane solutions 

BASIC PRINCIPLE 

1 t 

Sphere --Cylinder 

;--
 4 
 - a x  



For the sphere 

Wben we consider thedge momentg M and shear force Q to satisfy 
continuity ofdope and deflection we cannot haw equal and oppbsite 
Q as in Fig. 2.15 in the previous case. 

The membrane strcss and membrane M d o 1 1 s  above requiru the 
edge forces as shown in Fig. 2.176. Ths r&md form on the edge of 
the sphere has components as shown in Fig 2.17~and heme the edge 
form and moments to prod- compatibility art as shown in Fig. 
2.17d. 

The limit anaIysis of shells is 8 relatively new mbject, but Bodge 
[2.IS] has written a monograph which gives an excellent survey of 
the basic work up to the present time. Very W e  work haa beencarried 
out an non-rotationally symmetric probIems (there are two papem 
in [2.19]) but this review of the principles is d o t e d to rotationalfy 
symmetricproblems. 

If we consider a strncture made of maatid with an elsstiwideaUy 
plastic artressdtrain curve M shown in Fig. 2.18a wa can dimus whst 
happens as we incream the load w the struchrre. hitially we have an 
elastic distribution of stresses, but as the load iacrcascs, yield will 
occur somewhere, but the smaU voluma of yielded mtcrial is ocn-
strainedby stmounding elastic materid and the btrmins and deflections 
ared.As tke  toadishuther increased, yield devetapsuntil a region 
or a number of regions have yielded sdciently so that ?hestmctura 
can flow under a constant load. TZlisassumes no d n hardeningand 
ignores any change in the shape of the'skchm undar Ioad. 

The load at which flow occurs is called the limit load and the 
method of analy& is refemd to as limit adyak .  Because we do not 
consider anychange ofshapeof the structure, the limit load calcdnted 
is strictly for a rigid-iWly plastic materia1 with a st~eswtraincurve 
as shown in Fig. 2.18b. 

Tha limit Ioad of s atmctam has a value which ~IIindependent of 
any residual stresses in the structure at zero load. It is solelyafunction 
of the geometry of the stmctme and the yield strtss of the material 
from which it is mads. At the limit load, four conditions m t  be 
mtis58d: 

(1) 	 A pattern of messes will exist io the structure which are in 
e q u i I i b h  with the h i t  Ioad and mtisfy the stress boundary 
conditions. 


