## ARTICLE A－3000 <br> A．VALYSIS OF SPHERICAL SHELLS

## A．3：CO MTROJUCT：CS <br> 1．？110 2 （1）Pt．







 \＆F．4T10）


（i）＂！lins：an aresure intenal er external． －
（2）If Vicribus．ai bending moment fer unit lencth of circumfercace．inch－pcunds For inch
（3） $1 /$ forei per unit ieng！h of circumference． perpendicular to eenter line of sphere． pound，per inch
（8）A Mewht we force pounds per inch
（5）（）Radial shearing force fer unit of cir－ cumference．pround，per inch
（6）S Stresintensity．pai
（7）R．．，Radias of micl－iurface of spherical shell．inches
（x）$R$ Inside radius anches
（1） 1 Itacknow of sptcrial shell．inches


 かいいい



（15）$\phi_{n}=$ Meridional angle of reterence edge where loading is applied．degrees
（16）$s_{t}=$ Meridional angle of second edge．de－ grees
（17）$:=$ Meridional angle measured from the reterence edge．radians
（19）$x=$ Length oi arc for angle $\therefore$ measured trom reisance edge of hamisphere． $-R_{n=1}$ I80．inches
119）$\quad i=3 R$ ，
（20）$Y=$ Ratio of outside madius to bside racius
（2）$Z=$ Ratio of outside radius in an inter－
－mediate rajius
122）$L=$ Ratio of inside rajius to an inter－ mediate radics
（23）$n=$ Radial displacement of mid－suriace． inches
（24）$s=$ Lateral displacement of mid－suriace． ferpendicular to center line of spiaeri－ cal shell．inches
（25）$\quad 4=$ Retation of mid－suriase．ajilans
（26）$\quad v=$ As a subscrift used to denote a quan－ tity at reference edge of sphere
（27）\＆$=$ As a subscript used io denote me－ ridional direction
（25）$t=$ As a subscript used to denote circum－ ferential direction
（29）
（30）$K:=1-\frac{1 \div I v}{2.1} \cot (0-u)$
（31）$\quad k_{i}=1-\frac{1-2 v}{2 \lambda} \cot o$
（32）$\quad k_{.}=1-\frac{1-21}{2.1} \cot 0$
（3．3）$A=1 T=\bar{k}$.
（24）$B(, 1)=\left(\left(1-1^{2}\right)\left(K_{0}^{0}-K_{i}\right)-2 K_{.}\right]$
（35）$C(4)=1 \frac{\sin 0}{\sin (0,-1)}$
（36）$F(.1)=\sqrt{\sin (3 . .) \sin (6 . .)-:}$
（38）$\quad s_{r}=$ Radial stress componsi
（39）$\quad \sigma_{t}=$ Tangential（circumfercmial）stress component．psi
（40）$\quad \sigma_{t}=$ Longitudinal（meridional）stress com－ ponent，psi
（b）The sign convention is listed below and shown in Fig．A－3120－1 by the positive directions of the pertinent quantities：
（p）Pressure，Positive radially outward
（ $\delta$ ）Lateral Displacement，Perpendicular to L of sphere，positive outward
（日）Rotation，Positive when accompanied by an increase in the radius or curva－ ture，as caused by a positive moment
$(M),\left(M_{0}\right)$ Moment，Positive when causing tension on the inside surface
$(H),\left(H_{o}\right)$ Force perpendicular to $L$ ，positive out－ ward
$\left(N_{t}\right),\left(N_{t}\right)$ Membrane，Force，Positive when caus－ ing tension

A． 3200 STRESS INTENSITIES，BENDING ANALYSIS，DISPLACEMENTS AND EDGE LOADS

## A－3210 PRINCIPAL STRESSES AND STRESS INTENSITIES RESULTING FROM INTERNAL OR EXTERNAL PRES． SURE

In this Subarticle formulas are given for principal stresses and stress intensities resulting from uniformly distributed internal or external pressure in complete or partial spherical shells．The effects of discontinui－ ties in geometry and loading are not included and should be evaluated independently．The stresses re－ sulting from all effects must be combined by super－ position．

## A－3220 PRINCIPAL STRESSES AND STRESS INTENSITIES

A－3221 Principal Stresses Resulting from Internal Pressure
The principal stresses at any point in the wall of a spherical shell as a result of internal pressure are given by the following formulas：

$$
\begin{gather*}
\sigma_{1}=\sigma_{t}=p\left(Z^{3}+2\right) / 2\left(Y^{3}-1\right)  \tag{a}\\
\sigma_{:}=\sigma_{t}=p\left(Z^{4}+2\right) / 2\left(Y^{-3}-1\right)  \tag{b}\\
\sigma_{3}=\sigma_{r}=p\left(1-Z^{3}\right) /\left(Y^{*}-1\right) \tag{c}
\end{gather*}
$$



FRUSTUM，FOR VALUES OF $\Phi_{0}$ ： $\phi_{0} ₹ 180^{\circ}-\frac{162}{\lambda}$ AND $\left|\Phi_{0}-\Phi_{L}\right|=\frac{180}{\lambda}$

FIG．A－3120－1

## A－3222 Stress Intensities Resulting From Inter－ nal Pressure

A－3222．1 General Primary－Membrane Stress In－ tensity．The general primary stress intensity in a spherical shell as a result of internal pressure is given by the formula：

$$
\begin{equation*}
S=.75 p\left(Y^{3}+1\right) /\left(Y^{4}-1\right) \tag{a}
\end{equation*}
$$

A－32222 Maximum Value of Primary－plus－Ser ondary Stress Intensity．The maximum value of t
stress intensity in a spherical shell as a result of internai pressure occurs att the inside surface and is given by the formula:

$$
\begin{equation*}
S=1.5 p\left(Y^{\prime}\right) /(Y-1) \tag{b}
\end{equation*}
$$

## A-3223 <br> Principal Stresses Resulting from External Pressure.

The principal stresses at any point in the wall of a spherical shell resulting from external pressure are given by the following formulas:

$$
\begin{align*}
& \sigma_{1}=\sigma_{t}=-p Y^{*}\left(U^{3}+2\right) / 2\left(Y^{3}-1\right)  \tag{a}\\
& \sigma_{2}=\sigma_{t}=-p Y^{*}\left(U^{3}+2\right) / 2\left(Y^{3}-1\right)  \tag{b}\\
& \sigma_{3}=\sigma_{r}=p Y^{*}\left(U^{3}-1\right) /\left(Y^{3}-1\right) \tag{c}
\end{align*}
$$

A-3224 Stress Intensities Resulting from External Pressure

A-3224.1 General Primary-Membrane Stress Intensity. The general primary membrane stress intensity in a spherical shell as a result of external pressure is given by the formula:

$$
\begin{equation*}
S_{\mathrm{ary}}=.75 p\left(Y^{3}+1\right) /\left(Y^{3}-1\right) \tag{a}
\end{equation*}
$$

A-3224.2 Maximum Value of Primary-plus-Secondary Stress Intensity. The maximum value of the primary-plus-secondary stress intensity in a spherical shefl as a result of external pressure occurs at the inside surface and is given by the formula:

$$
\begin{equation*}
S=1.5 p\left(Y^{3}\right) /\left(Y^{3}-1\right) \tag{b}
\end{equation*}
$$

NOTE: The formulas in A-3223 and A-3224 may be used only if the applied external pressure is less than the critical pressure which would cause instability of the spherical shell. The value of the critical pressure must be evaluated in accordance with the rules given in NB-3133.4.

## A-3230 BENDING ANALYSIS FOR UNIFORMLIY DISTRIBUTED EDGE LOADS

A-3231 Scope and Limitations of Formulas Given
(a) The formulas in this suhnubarticle describe the behavior of partial spherical nefls of the types shown in Fig. A-3120-1 when subjected to the action of meridional bending moments. W. (inch pounds per inch of circumterence). and forces. 11 . (pounds per inch of circumference), unifurnly distributed at the reference edge and acting at the mean radius of the shell. The effect, of all other loading must be evaluated independently and combined by verpanition
(b) The formulas listed in this paragraph become less accurate and should be used with caution when $R_{m} / t$ is less than 10 and $/$ or the opening angle limitations shown in Fig. A-3120-1 are exceeded.

## A-3232 Displacement, Rotation, Moment and Membrane Force in Terms of Loading Conditions at Reference Edge

The displacement, ( $\delta$ ), the rotation, $(\theta)$, the bending moments, $\left(M_{l}\right),\left(M_{t}\right)$, and the membrane forces, ( $N_{t}$ ), ( $N_{t}$ ), at any location of sphere are given in terms of the edge loads, $M_{0}$ and $H_{a}$, by the following formulas:

$$
\begin{align*}
& \delta=M_{n}\left\{\frac{2 \lambda^{2}}{E t k_{1}} F(a) e^{-\lambda a}\left[\cos (\lambda a)-K_{z} \sin (\lambda a)\right]\right\} \\
& +H_{0}\left\{\frac { R _ { m } { } ^ { \lambda } } { E t k _ { 1 } } A _ { 0 } \operatorname { s i n } \phi _ { 0 } F ( a ) e ^ { - \lambda a } \left[\cos \left(\lambda a+\gamma_{0}\right)\right.\right. \\
& \left.\left.-K_{\underline{z}} \sin \left(\lambda_{a}+\gamma_{0}\right)\right]\right\}  \tag{a}\\
& \theta=M_{0}\left\{\frac{4 \lambda^{3}}{R_{m} E t k_{1}} C(a) \epsilon^{-\lambda a} \cos (\lambda a)\right\} \\
& +H_{0}\left\{\frac{2 \lambda^{2}}{E t k_{1}} A_{0} \sin \phi_{0} C(a) e^{-\lambda a} \cos \left(\lambda a+\gamma_{0}\right)\right\}  \tag{b}\\
& M_{t}=M_{0}\left\{\frac{1}{k_{1}} C(a) e^{-\lambda a}\left[K_{1} \cos (\lambda a)+\sin (\lambda a)\right]\right\} \\
& +H_{v}\left\{\frac { R _ { m } } { 2 \lambda k _ { 1 } } A _ { o } \operatorname { s i n } \phi _ { v } C ( a ) e ^ { - \lambda a } \left[K_{1} \cos (\lambda a+\right.\right. \\
& \left.\left.\left.+\gamma_{0}\right)+\sin \left(\lambda a+\gamma_{0}\right)\right]\right\}  \tag{c}\\
& M_{1}=M_{o}\left\{\frac{C(a)}{2 v k_{\mathrm{i}}} e^{-\lambda a}\left[B(a) \cos (\lambda a)+2 v^{v} \sin (\lambda a)\right]\right\} \\
& +H_{n} \int \frac{R_{m}}{4 v \lambda k_{1}} A_{n} \sin \phi_{v} C(a) e^{-\lambda a}\left[B ( a ) \operatorname { c o s } \left(\lambda_{a}\right.\right. \\
& \left.\left.\left.+\gamma_{0}\right)+2 \nu^{2} \sin \left(\lambda a+\gamma_{0}\right)\right]\right\}  \tag{d}\\
& N_{\mathrm{f}}=-M,\left\{\frac{2 . \lambda}{R_{m} k_{1}} C(a) e^{-\lambda \omega} \sin (\lambda a) \cot \left(\phi_{o}-\alpha\right)\right\} \\
& -H_{n}\left\{\frac{1}{k_{1}} A_{0} \cot \left(\phi_{b}-a\right) C(a) e^{-\lambda a} \sin \left(\lambda a+\%_{0}\right)\right\}  \tag{e}\\
& N_{\mathrm{t}}=M_{u}\left\{\frac { 2 , \lambda ^ { 2 } } { R _ { i u } k _ { 1 } } C ( u ) e ^ { - \lambda a } \left[\cos \left(\lambda_{u}\right)\right.\right. \\
& \left.-\left(\frac{K_{1}+K_{i}}{2}\right) \sin \left(\lambda_{1 .}\right)\right]
\end{align*}
$$

$$
\begin{align*}
& {\left[\cos \left(\alpha u-\omega_{\omega}\right)-\binom{K_{1}+K_{2}}{2} \sin \left(A u+\digamma_{\mu}\right)\right]} \tag{f}
\end{align*}
$$

A-3233 Displacement and Rotation of Reference Edge in Terms of Loading Conditions at Reference Edge

A-3233.1 At the Reference Edge Where $a=0$, and $\phi=\phi_{00}$. The formulas for the displacement and rotation (A-3232) simplify to those given below:

$$
\begin{gather*}
\delta_{0}=M_{0} \frac{2 \lambda^{2} \sin \phi_{0}}{E t k_{1}}+H_{0} \frac{R_{m} \lambda \sin ^{2} \phi_{0}}{E t}\left(\frac{1}{k_{1}}+k_{z}\right)  \tag{a}\\
\theta_{0}=M_{0} \frac{4 \lambda^{3}}{R_{m} E t k_{1}}+H_{0} \frac{2 \lambda^{2} \sin \phi_{0}}{E t k_{1}} \tag{b}
\end{gather*}
$$

A-3233.2 When Shell Is A Full Hemisphere. In the case where the shell under consideration is a full hemisphere the formulas given in (a) and (b) above reduce to those given below:

$$
\begin{align*}
\delta_{o} & =M_{o} \frac{2 \lambda^{2}}{E t}+H_{0} \frac{2 R_{m} \lambda}{E t}  \tag{2}\\
\theta_{0} & =M_{o} \frac{4 \lambda^{3}}{R_{m} E t}+H_{0} \frac{2 \lambda^{2}}{E t} \tag{b}
\end{align*}
$$

A-3234 Principal Stresses in Spherical Shells Resulting from Edge Loads

The principal stresses at the inside and outside surfaces of a spherical shell at any location, resulting from edge loads, $M_{0}$ and $H_{0}$, are given by the following formulas:

$$
\begin{align*}
& \sigma_{1}=\sigma_{t}(a)=\frac{N_{t}}{t}=\frac{6 M_{t}}{t^{2}}  \tag{a}\\
& \sigma_{2}=\sigma_{t}(a)=\frac{N_{t}}{t} \pm \frac{6 M_{t}}{t^{2}}  \tag{b}\\
& \sigma_{3}=\sigma_{\mathrm{r}}(a)=0 \tag{c}
\end{align*}
$$

In these formulas where terms are preceded by a double sign, $\pm$, the upper sign refers to the inside surface of the shell and the lower sign refers to the outside surface.

A-3240 AITI:RNATE BFXDIVG AN:ILYSIS ()F A HEMHPHIERIC W. SHFIL, SCB. JECTED TO LNIFORMIIY DISTIRBUTED ED(;E I.OADS

## A-32+1 Nature of Formulas Given

If a less exacting but more expedient analysis of hemispherical shells is required, formulas derived for cytindrical strells may be used in a modified form. The formulas listed in A-3242 describe the behavior of a hemispherical shell as approximated by a cylindrical shell of the same radius and thickness when subjected to the action of uniformly distributed edge loads, $M$, and $H_{v}$, at $\alpha=0, x=0$, and $\phi_{0}=90^{\circ}$.
A-3242 Displacement, Rotation, Moment and Shear Forces in Terms of Loading Conditions at Edge

$$
\begin{align*}
\delta_{o} & =H_{a} / 2 \beta^{3} D+M_{0} / 2 \beta^{2} D  \tag{a}\\
\theta_{0} & =H_{0} / 2 \beta^{2} D+M_{0} / \beta D  \tag{b}\\
\delta(x) & =\frac{H_{n} \sin ^{2} \phi}{2 \beta^{3} D} f_{1}(\beta x)+\frac{M_{o} \sin \phi}{2 \beta^{2} D} f_{2}(\beta x)  \tag{c}\\
\theta(x) & =\frac{H_{0} \sin \phi}{2 \beta^{2} D} f_{2}(\beta x)-\frac{M_{0}}{\beta D} f_{1}(\beta x)  \tag{d}\\
M(x) & =\frac{H_{0} \sin \phi}{\beta} f_{+}(\beta x)+M_{0} f_{3}(\beta x)  \tag{e}\\
Q(x) & =H_{0} \sin \phi f_{2}(\beta x)-2 \beta M_{o} f_{4}(\beta x) \tag{i}
\end{align*}
$$

Where $f_{1}, f_{2}, f_{3}$ and $f_{4}$ are detined in Article A-2000, Analysis of Cylindrical Shells, and

$$
x=\alpha R_{m}=\frac{\pi R_{m}}{180^{6}}\left(90^{\circ}-\phi\right)
$$

A-3243 Principal Stresses in a Hemisp̈hërical Shell Due to Edge Loads
The principal stresses in a hemispherical shell due to edge loads. $\left(M_{n}\right)$ and $\left(H_{n}\right)$, at the inside and outside surfaces of a hemispherical shell at any meridional location, are given by the formulas:

$$
\begin{align*}
& \sigma_{1}=\sigma_{t}(x)= \pm 6 M(x) / t^{2}  \tag{a}\\
& \sigma_{2}=\sigma_{t}(x)=E \delta(x) / R_{m} \pm v M(x) / t^{2}  \tag{b}\\
& \sigma_{3}=\sigma_{r}=0 \tag{c}
\end{align*}
$$

In these formulas where terms are preceded by a double sign, $\pm$, the upper sign refers to the inside surface of the hemisphere and the lower sign refers to the outside surface.

