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1. Strain-Displacement Relations in Cylindrical Coordinates 

The consideration of the relations between strain and displacement in cylindrical 
coordinates r, q, z for reasons of simplicity is first confined to the consideration of the 
two-dimensional case where it is assumed that all points which are in the (r, q)-plane 
before deformation remain in the same plane during deformation. This means that the 
problem is initially attacked in polar coordinates only, assuming that the displacements 
components in the r- and q-direction, ur and uq, are independent of the axial (z-direction) 
displacement component w, with the influence this latter component to be considered 
later. 

Figure 1 
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The derivation is based on the consideration of an infinitesimal ##### element ABCD 
(Fig. 1) which by deformation of the body is deformed displaced to A'B'C'D' . By 
definition, the principal strain in the radial direction is given by: 

A' B' - AB 
er = (1)

AB 
thus 

A' B' = (1 +e )AB = (1+ e )dr . (2)r r 

Referring to Fig. 1, the small variations of the radial and tangential displacements from A 
to B may be obtained by multiplying the rates of change of ur and uq with respect to r at A 
by the length of the infinitesimal element AB = dr . Herewith the following trigonometric 
relationship obtained: 
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= (1+ e )2
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where the partial derivatives are used for the reason that ur and uq vary as functions of 
both r and q. 

In the so-called small deformation theory the radial strain er and the derivatives of 
the displacements, ∂ur / ∂r  and ∂uq / ∂r  are considered to be small. Therefore, the squares 
and products of these quantities may be neglected in comparison with the quantities 
themselves, so that under these conditions Eq. (3) reduces to: 

∂u
er = r .  (4)

∂r 
Correspondingly, the principal strain in the tangential direction 

A' D' - AD 
eq = (5)

AD
gives the relation 
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Under the conditions of small deformation theory, Eq. (7) reduces to 
u 1 ∂u

eq = r + q .  (8) 
r r ∂q 

The shear strains are defined as the angles of distortion of the original angles of the 
element. Thus the shear strain grq is by definition (see Fig. 1) 

grq = a1 + a2 ,  (9) 
where a1 and a2 denote the angles of inclination between AB  and A' B' , resp. between 
ADand A' D' . Under the assumption that the angular changes a1 and a2 may be 
considered as being small and assuming that ∂ur / ∂r  and ∂uq / ∂r  are much smaller than 
unity, 
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where b is the rotational angle of the element due to deformation, we obtain: 
∂u ∂u u

a1 = q - b = q - q .  (10)
∂r ∂r r 

Similarly the angular change a2 can be determined as 

a2 ª tana2 = 
(∂ur / ∂r)rdq 

ª
∂ur .  (11)
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Ë
1 + + 

¯
rdq

r r∂q 
Substitution of Eqs. (10) and (11) into Eq. (9) gives 

1 ∂u ∂u u
g rq = r + q - q .  (12) 

r ∂q ∂r r 
Equations (4), (8) and (12) give the two-dimensional strain-displacement relations in 
polar coordinates. 

In the general three-dimensional case in cylindrical geometry, when z is the axial 
direction, there are a further normal strain ez and two shear strains gqz and gzr. With w 
denoting the displacement component in the axial direction, the complete set of strain-
displacement relations in cylindrical coordinates is: 

∂u u 1 ∂u ∂w 
er = r , eq = r + q , e = ,


∂r r r ∂q z ∂z

1 ∂u ∂u u

g rq = 2erq = r + q - q ,  (13) 
r ∂q ∂r r 
∂u 1 ∂w ∂u ∂w 

gqz = 2eqz = q + , g = 2e = r + . 
∂z r ∂q zr zr ∂z ∂r 

The relations between displacements and rotations of the element of the deformed body 
are: 
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2. Strain-Compatibility Equations in Cylindrical Coordinates 

Equations (13) express six strain components in terms of the three displacement 
components ur, uq and uz. This implies that, if the strain components were arbitrarily 
prescribed, the six equations cannot, in general, be expected to yield single-valued 
continuous solutions for ur, uq and uz. Therefore, conditions of noncontradiction must be 
formulated to ensure the compatibility of the strain components in order to give single 
valued continuous solutions for the displacements. 

These conditions, which are called strain-compatibility equations, are obtained 
from the strain displacement equations, Eqs. (13), by elimination of the displacement 
components. The resulting strain-compatibility equations in cylindrical coordinates are: 

∂2er = 
1 ∂ Ê 

-r 2 ∂eqz + r ∂ezr + r 2 ∂erq ˆ -
2 ∂ezr ,

∂q∂z r ∂r Ë ∂r ∂q ∂z ¯ r ∂q 
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where 
1 1 1 

erq = g rq , eqz = gqz , ezr = g zr .  (15a)
2 2 2

3. Stress Equilibrium Equations in Cylindrical Coordinates 

The stress-equilibrium equations in cylindrical coordinates r, q and z are derived 
from the consideration of the conditions of equilibrium of an infinitesimal volume 
element 

dV = rdrdqdz 

Figure 2 

Since the object is to analyze the variation of stresses, infinitesimal changes in the stress 
components are taken into account as indicated in Fig. 2. It is assumed that each stress 
component acts at the centroid of its side. Hence, the corresponding force is the product 
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qdz = 0

of the stress and the area of the side. Body forces per unit of volume are assumed to act at 
the centroid of the infinitesimal volume element, their components Fr, Fq, and Fz are 
acting in the coordinate directions. 
For simplicity, the equilibrium considerations are first confined to the (r, q)-plane with 
the contributions from forces acting in the (z, r)- and (z, q)-planes to be incorporated 
thereafter. 
Considering the two-dimensional state of stress in the (r, q)-plane, for a slice thickness 
dz, the condition of equilibrium of forces acting on an infinitesimal element, as shown in 
plane (r, q) view in Fig. 2a, in the radial direction r is: 
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∂
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where the last term on the left side represents the radial component of the circumferential


forces sq drdz and 
Ë 
Ê 
sq + 

∂sq dq
¯ 
ˆ drdz  as shown in Fig. 2b. 

∂q 
The condition of the equilibrium of forces acting on the infinitesimal element in 

the tangential direction q is: 
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where the last term on the left side is the tangential component of the forces tqr drdz  and

Ê 
tqr + 

∂tqr dqˆdrdz  as shown in Fig. 2c. 
Ë ∂q ¯ 

Consideration of the three-dimensional state of equilibrium of forces acting on the 
infinitesimal volume element shows that the forces acting in the (axial) z-direction do not 
contribute any component to the stress-state in the r- and q-directions, and vice versa the 
forces in the r- and q-directions do not contribute any component to the stress-state in the 
z-direction. 

Therefore, for completing the above planar equilibrium equations for the three-
dimensional case, it is only necessary to add to the left side of Eq. (17) the term 
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The condition of equilibrium in the axial direction z is: 
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The planar stress-equilibrium equations, Eqs. (17) and (18), completed by the 

respective terms, Eqs. (19) and (20), and Eq. (21), on eliminating differential terms of 
higher order, reduce to: 
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∂s 1 ∂t ∂t s - sr rq rz r q+ + + + F = 0  (22a)
∂r r ∂q ∂z r r 

∂t 1 ∂s ∂t 2rq r qz+ + + trq + Fq = 0  (22b)
∂r r ∂q ∂z r 

∂t 1 ∂t ∂t 1rz qz qz+ + + t + F = 0 .  (22c)
∂r r ∂q ∂z r rz z 

In arriving at the reduced equilibrium equations, the conditions 
trq = tqr , tqz = t zq , tzr = t rz ,  (23) 

which follow from a consideration of the moment-equilibrium of all the forces acting on 
the volume element, have been utilized. 

4. Linear Elastic Stress-Strain Relations in Cylindrical Coordinates 

The stress-strain relations in the cylindrical coordinate system for isotropic linear 
elastic material with constant thermoelastic materials properties in explicit form for the 
strain components and in terms of the elasticity parameters, Young’s modulus E, 
Poisson’s ratio n, and shear modulus G, are: 

r [ (e =
∂u

= 
1 

s - n s + s )] + aDT,¸ 
r r q z∂r E Ô 

eq = 
ur = 

1 [sq -n s( r +s )] +aDT, Ô 
Ô 

r E z 

˝ (24) 
ez =

∂w 
= 

1 [s z -n s( r +sq )] +aDT, Ô 
∂z E 

Ô1 1 1 
erq = t rq ,eqz = tqz ,erz = trz .Ô 

2G 2G 2G ˛ 
The same relations written in explicit form for the stress components and in terms of 
Lame’s constants l and m are: 

sr = lekk + 2mer - (3l + 2m)aDT, ¸ 

sq = lekk + 2meq - (3l + 2m)aDT, Ô 
˝ (25) 

sz = le kk + 2me z - (3l + 2m)aDT, Ô 
trq = 2merq ,tqz = 2meqz,trz = 2merz ,˛ 

where ekk denotes the volume dilatation which is derived in the following ##### 
The Lame’s constants are defined as follows: 

E nE 2nG 
m = = G , l = = .  (26)

2 1+ n) ( )(1 - 2n) 1 - 2n( 1 +n 
The bulk modulus K (also designated as compression modulus) 

2 1+ n EK = G = (27)
3 1 - 2n 3 1 ( - 2n )

is related to the Lame’s constants by: 3l + 2m = 3K , and Young’s modulus and 
Poisson’s ratio may be expressed as: 

m(3l + 2m) 9GK 
E = = ,  (28)

l + m 3K + G 
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l 3K - 2G 
n = = .  (29)

2(l + m) 6K + 2G 
The relation between the volume dilatation ekk 

= e + e + e = 
1 ∂(rur ) + 

1 ∂uq +
∂w 

(30)ekk r q z r ∂r r ∂q ∂z
and the sum of the normal skk 

skk = sr + sq + s z  (31) 
follows from Eqs. (24) 

ekk =
skk + 3aDT .  (32)
3K 

Utilizing the elastic parameters G and n and the volume dilatation ekk, the relations 
between stresses and strains, Eqs. (25), may also be expressed as follows: 
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Ë
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5. Stress-Displacement Relations in Cylindrical Coordinates 

Substituting the strain-displacement relations, Eqs. (13), into Eqs. (33) yields the 
following equations for the stress components in terms of the displacements: 

Ê ∂u n 1 +n ˆ ¸ 
sr = 2G r + ekk - aDT ,

Ë ∂r 1 - 2n 1 - 2n ¯ Ô 

sq = 2G
Ë 
Ê u

r
r + 

1 
r 

∂

∂

u
q

q + 
1-

n 
2n

ekk - 1
1
-

+ 

2
n
n 

aDT
¯ 
ˆ ,Ô 

Ô 

Ô 

sz = 2GÊ 

Ë 
∂w 

+
n

ekk -
1+ n 

aDTˆ 
¯

, ÔÔ
∂z 1- 2n 1- 2n 
˝ (34) 

trq = GÊ1 ∂ur +
∂uq -

uq ˆ , Ô
Ë r ∂r ∂r r ¯ 

Ô 

tqz = GÊ 
Ë 

∂

∂

u
z 
q + 

1 
r 

∂

∂

w 
q

ˆ 
¯ 
, Ô 

Ô 

trz = GÊ 
Ë 

∂

∂

u
z
r + 

∂

∂

w
r 

ˆ 
¯
. 

Ô 
Ô
˛ 

6. Equilibrium Equations in Terms of Displacements 
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The equilibrium equations for the stresses, Eqs. (22), by means of the stress-strain 
relations, Eqs. (25), can be expressed in terms of strain, and the strain components in turn 
can be expressed in terms of displacement. Such a formulation is of particular usefulness 
when the boundary conditions are given as prescribed displacements or rotations. 

The equilibrium equations for the stresses in terms of the displacement 
components take the following form: 

(l + m) ∂ekk + m— 2 u - (3l + 2m)a 
∂T 

+ F = 0 ,
∂r r ∂r r 
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+ F = 0 ,
∂z ∂z z 

where — 2  is the three dimensional Laplacian operator in the cylindrical coordinate 
system r, q, z: 

2 ∂2 1 ∂ 1 ∂ 2 ∂ 2 

— ≡ 2 + + 2 2 + 2 . ∂r r ∂r r ∂q ∂z 
Substitution of the rotation components, Eqs. (14), yields the equilibrium equations for 
the stresses in the following form: 
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7. Mathematical Formulation of the Problem of Thermoelasticity 

If the temperature distribution in a body s known, the problem of the elasticity 
consists in the determination of the following 15 functions (in cylindrical coordinates): 

6 stress components: sr, sq, sz, trq, tqz, tzr; 
6 strain components: er, eq, ez, grq, gqz, gzr; 
3 displacement components: ur, uq, w, 

so as to satisfy the following 15 equations throughout the body: 
3 equilibrium equations: Eqs. (22) 
6 stress-strain relations: Eqs. (24), or expressions in other form 
6 strain-displacement relations: Eqs. (13), 

as well as to satisfy the boundary conditions. 
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