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Almtrac-The present work addresses the problem of the formulation of an accurate yet efficient finite 
element procedure for the nonlinear analysis of general threedimensional reinforced concrete structures. 
The main objectives of the research are: (1) the extension and recalibration of an existing bounding surface 
model for the behavior of concrete in cyclic compression; (2) the development of a complete constitutive 
relation for reinforced concrete by combining the bounding surface model with numerical procedures for 
the modeling of crack propagation, tension stiffening and steel reinforcement interaction effects; and (3) 
the implementation of the constitutive model in a three-dimensional isoparametric eight-node element. The 
accuracy of the proposed model is successfully demonstrated by detailed analyses of a deep beam and 
a prestressed concrete reactor vessel. 

NOTATION 


model parameters 
compliance tensor 
rigidity matrix of concrete. at time. I, and at 
iteration i 
normalized distance, and its increment 
normalized deviatoric strain tensor, and its 
increment 
nonnalizcd deviatoric strain due to elastic 
response, and its increment 
normalized deviatoric strain due to plastic 
response, and its increment 
bounding surface 
normalization factor 
concrete strength in uniaxial compressiqn 
concnte strength in uniaxial tension 
shear modulus. and shear modulus of 
cracked concrete 
fracture energy of concrete 
generalized plastic shear modulus 
first normalized stress invariant, its incre- 
ment, and its maximum value 
second and third normalized deviatoric 
stress invariants 
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K,dK. K,, 	 damage parameter, its increment. and its 
maximum value 
associated K value at beginning of recent 
loading and unloading process, respectively 
tangent bulk modulus 
characteristic length for concrete cracking 
distance of bounding surface from hydroaxis 
along Sudirection 
distance from projection of current stress 
point on deviatoric plane to the hydroaxis 
internal forces vector at iteration i 
normalized deviatoric stress tensor, and its 
increment 
displacement increment vector at iteration i 
stiffening parameter 
shear compaction-dilatancy factor 
shear compaction factor 
shear dilatancy factor 
uniaxial strain, its value associated to f; 
strain vector at iteration i, its increment, and 
at time r 
fictitious tensile strain normal to a crack. 
and its maximum value 
normalized strain tensor, and its increment 
associated axial strain to f: in uniaxial 
loading 
normalized plastic octahedral sheat strain 
and its increment 
angle between projections of position vector 
of principal stress and that of any tensile 
semiaxis on deviatoric plane 
normalized octahedral shear strws, and its 
increment 
uniaxial stress 
stress vector at iteration i, its increment, and 
at time t 
stnss tensor, its increment and its principal 
values 
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INTRODUCTION MODEL OF CONCRETE BEHAVIOR IN 
COMPRESSION 

The need for an accurate prediction of the response 
of complex reinforced concrete structures has stimu- 
lated conspicuous research activity in the field of 
computational analysis of reinforced concrete struc- 
tures during the last 20 years. Advances in the areas 
of finite elements, concrete constitutive modeling and 
nonlinear solution techniques have made sophisti- 
cated analysis of this complex composite material 
possible. Nevertheless, several aspects of the current 
analysis methods are still unsatisfactory. A major 
problem with the applicability of state-of-the-art 
finite element analysis of reinforced concrete struc- 
tures to realistic problems is that sufficient accuracy 
is often accompanied by excessive computational 
costs. Undoubtedly, many important aspects of re- 
inforced concrete behavior make its analysis rather 
complicated. Among these are: the nonlinear multi- 
axial stress-strain response; the shear compaction- 
dilatancy phenomenon; the strain softening behavior 
and the stiffness degradation in cyclic loading. In 
addition, the formation and propagation of diffuse 
microcracks which coalesce into localized fracture 
zones is often a dominating component of the non- 
linear structural response. Furthermore, the com-
posite nature of the material introduces additional 
difficulties in modeling the interactions between re- 
inforcement and concrete. Each of the aspects of the 
material behavior mentioned have been studied ex- 
tensively and several alternative approaches have 
been suggested, but no general agreement has been 
reached. 

There is a critical need for the development of a 
finite element approach based on a constitutive model 
consistent with these aspects of the phenomenological 
behavior of concrete. This paper represents our effort 
in answering this need by: (1) extending and recali- 
brating an existing bounding surface model [1] for 
concrete behavior in cyclic compression; (2) develop- 
ing a complete constitutive relation for reinforced 
concrete by combining the bounding surface model 
with numerical procedures for the modeling of crack 
propagation, tension stiffening and steel reinforce- 
ment interaction effect; (3) implementing the constitu- 
tive model in a three-dimensional isoparametric 
eight-node brick which has been successfully tested in 
several example problems. 

The remainder of this paper is divided in four 
parts. In the following section, the extensions and 
recalibrations of the bounding surface model are 
presented. Next, the adopted models for post-
cracking behavior are examined. Thereafter, the non- 
linear solution methods used in the analysis of 
concrete structures are reviewed and the procedures 
adopted in this work are discussed. Finally, the 
d t s of finite element analysis of a deep beam and 
a prestressed concrete reactor vessel are presented. 
They compare favorably with the experimental 
results. 

Numerous models for the behavior of concrete in 
compression have been proposed during the last 15 
years. A comprehensive review of these models may 
be found in [2-51. Although many of these models can 
describe the behavior of concrete in monotonic load- 
ings, only a few of them are capable of describing the 
complex multiaxial cyclic behavior. Among these 
models, considerations of numerical efficiency led us 
to focus attention on a previously proposed bounding 
surface model [l]. Such a model accurately predicts 
the nonlinear stress-strain response, stiffness degra- 
daiion during load cycles, the shear compacti~ii and 
dilatancy and the strain softening in uniaxial loading. 
This model, however, does not provide a satisfactory 
prediction near and beyond ultimate strength for 
triaxial states of stress [2]. A modified version of the 
model which extends its range of applicability is 
developed as part of this work. The most significant 
improvement introduced to the model are: 

(a) the 	 recalibration of the damage formulation 
using a large amount of experimental data, 

(b) the 	 formulation of a new bounding surface 
equation based on a large set of experimental 
data including recently produced experiment re- 
sults from cyclic loading with triaxial com-
pression [6], 

(c) the introduction of hydrostatic pressure sensi- 
tivity in the post-failure zone to allow more 
realistic modeling of the strain softening 
behavior. 

In addition, the model has been made applicable to 
a wide range of concretes by expressing the material 
constants as functions of the uniaxial compressive 
strength of concrete and the corresponding peak 
strain. 

It should be noted that recent studies, e.g. [q,have 
shown that the strain softening behavior of concrete 
is not a material property, but rather a structural 
property, in the sense that the geometry of the 
surrounding structure directly influences the soften- 
ing behavior. As a result, the stress-strain relation- 
ship should reflect the effect of finite element 
size. However, due to the lack of experimental data 
on the post-failure behavior of concrete, the develop- 
ment of a consistent three-dimensional model in the 
post-peak phase is premature[4]. A continuum a p  
proach is, therefore, adopted in the present model, 
i.e., the incremental compliance relationships are 
assumed to hold in both the pre-failure and post- 
failure ranges. 

In the following sections, the bounding surface 
concept is briefly reviewed, and the essential aspects 
of the proposed model are described (details can be 
found in [l, 21). Note that in the following formu- 
lation, stresses and strains are normalized with re- 
spect to the uniaxial compressive strength and @ 
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associated peak strain, respectively. Normalized 
quantities are indicated with a circumflex (^). 

The bounding surface concept 

The bounding surface is defined as the innermost 
locus of all achievable points in stress space that also 
encloses the current state of stress. In contrast to the 
classical plasticity theory, where loading and unload- 
ing criteria are defined in terms of yield and loading 
surfaces, bounding surface models do not postulate 
a priori the existence of such surfaces. The bound- 
ing surface concept is linked with the idea of irrevers- 
ible damage. This concept expresses at the macro- 
scopic level a bounding material state resulting 
from microscopic defects. Material damage (micro- 
cracking, crushing) is accounted for by contracting 
the bounding surface in stress space as damage 
accumulates. 

In order to obtain a scalar measure of damage, a 
mapping rule is required. Following [1], a radial 
mapping in the deviatoric plane containing the stress 
point is used to associate an 'image' stress point on 
the bounding surface with any given stress point 
within the surface. The rate of plastic deformation is 
expressed as a function of the distance between the 
current stress point and its 'image' on the bounding 
surface. Figure 1 illustrates the previous concepts. 

Damage representation 
For deviatoric loading and unloading, it is pro- 

posed that the damage be expressed as a function of 
the stress state using the normalized distance D from 
the stress point to the hydrostatic axis in the devia- 
toric plane. This normalized distance may be ex-
pressed in terms of j,, the second invariant of the 
normalized deviatoric stress. In the post-failure 
range, however, the stress point lies continuously on 
the bounding surface, because the bounding surface 
shrinks with increasing strain. This results in a con-
stant post-failure value of D = I. Hence, a strain 

measure based on the plastic octahedral shear 
strain j,P is chosen to represent damage in the post- 
failure range. j,P is a good measure of the overall 
plastic straining in the deviatoric plane. Using these 
ideas, the following incremental formulations were 
proposed in [I]: 

1. For deviatoric loading and unloading 

2. In the post-failure range 

where fl is the fist invariant of the normalized stress 
tensor, and 8 is the angle between the projections of 
the position vector of the principal stress and that of 
any tensile semiaxis on the deviatoric plane. The total 
damage K is obtained by integrating the rate of 
damage dK along the stress path: HPis the plastic 
shear modulus. The function Fl (I,, 8) accounts for 
the hydrostatic pressure and stress path dependency 
of the behavior of concrete on the deviatoric plane. 
This function is chosen to normalize K so that it 
reaches the value of 1.0 at failure under monotonic 
loading. Using test data from monotonic [6,&10] 
and cyclic [6, 11,121 loadings, with cycle ranges of 
0-85%, 3045%. and 40-95% of the uniaxial com- 
pressive strength in both confined and unconfined 
loading, the following regression forms are proposed: 

1. For deviatoric loading 

Projection of bounding 

Fig. I .  The bounding surface model: (a) bounding surface, (b) radial mapping (from (11). 
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2. For deviatoric unloading 

j,,,, and F,,,, are respectively the maximum 1, 
and F,before the most recent unloading. The func- 
tion G(cos 38) is obtained from the biaxial data in 
[lo, 13-15J and the triaxial data in [7, 141. The 
following expression is found to be adequate 

Bounding surface 

An important feature of the present model is the 
revised bounding surface equation. The bounding 
surface is defined as the innermost surface in stress 
space that encloses all the possible stress points, for 
a given damage level. Tliis surface is given as a 
function of the stress state and &,, the maximum 
value of damage ever experienced by the material 

Using the available experimental data [6-8, 10, 
13-15], the coefficients of the bounding surface 
equation proposed in [I] are recalibrated by re-
gression analysis and the following expression for the 
failure surface is obtained 

Incremental stress-strain law 

As in incremental plasticity, the strain increment is 
decomposed into its elastic and plastic components, 
and the following incremental compliance law is 
derived [l,2] 

In displacement-based finite element analysis, the 
compliance matrix obtained from the above ex-
pression is inverted to obtain the material rigidity 
matrix. It is worth noting that this matrix is not 
symmetric due to the coupling between deviatoric 
stressesand volumetric strains. Following (9), in the 
present finite element implementation, only the sym- 
metric part of the stiffness matrix is considered for 
stiffness assemblage. 

All the material parameters used in this constitu- 
tive model are determined through regression analy- 
sis using the available experimental results for 
concrete. Their analytical expressions are given in the 
Appendix. It should be noted that the data provided 
in [14] have been used to develop an expression for 
the plastic shear modulus in the post-failure range 
which accounts for the hydrostatic pressure depen- 
dent behavior of concrete. As a result, the brittle 
behavior at low confining pressure (steep softening 
branch), and the rather ductile behavior at high 
conlining pressure (almost perfectly plastic), are both 
predicted accurately. 

Cornoariron with exoerimental data 

The proposed model accurately predicts the 
monotonic behavior of concrete. As an example, 
Fig. 2 illustrates the comparison with the test results 
provided by Kotsovos and Newrnan [9]; the overall 
response is good, although a -40% underestimation 
of the radial strain at failure is predicted. The model 
prediction of the cyclic behavior is satisfactory for 
uniaxial and biaxial loading. In the cyclic loading 
between two values of compressive axial stress 
examined by Soon [q, the principal strain is satisfac- 
torily predicted, whereas the radial tensile strain is 
underestimated by -25% (cf. Fig. 3a). 

The biaxial cyclic behavior of concrete is also 
found to be predicted accurately. A displacement 
controlled plane strain biaxial test to the failure 
envelope by Buyukozturk et al. [I 1,161 (which results 
in nonproportional loading) is shown in Fig. 3(b). 
However, the unloading path is not predicted well, 
and hence, the energy dissipation is substantially 

Fig. 2. Model prediction in triaxiai monotonic loading: test 
data from [9]. 
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Test doto 
Proposed model 

Fig. 3. Model prediction in cyclic loading: (a) uniaxial test 
data from (61; (b) biaxial test data from [I  1, 161; (c) triaxial 

test data from [6]. 

underestimated. The overall prediction is satisfac- 
tory. The model correctly captures the loading path, 
peak stress and permanent deformations. 

It is only recently that triaxial cyclic data for 
concrete have become available [6,7l.In trying to 
predict the triaxial cyclic behavior of concrete with 
the proposed model [2], two difficulties are generally 
encountered: (1) the energy dissipation during load 
cycles is negative, and (2) the large hysteresis loop 
corresponding to the first load cycle is not accurately 
described, i.e., the plastic strain is underestimated. 
However, if the principal compressive strain before 
the first load reversal is prescribed, a satisfactory 
prediction is achieved for the triaxial cyclic loading of 
concrete between two values of the principal stress. 
The test results obtained by Soon [6], in which the 
radial confining stress equaled 1200 psi and the prin- 
cipal stress was cycled between 30 and 95% of the 
average monotonic strength, are reasonably well pre- 
dicted (cf. Fig. 3c). Based on these results, relatively 
little refinement to the present model is needed to 
obtain or. realistic model of the behavior of concrete 

under triaxial cyclic compressive stresses. An exten- 
sion of the model is feasible and should be the subject 
of further research. 

MODEL OF WST-CRACKING BEHAVIOR 

Concrete cracking represents one of the most 
important causes of nonlinearity in the material 
response. Hence, a realistic prediction of ultimate 
loads and failure modes cannot be achieved without 
careful modeling of the complex phenomena which 
accompany the formation and propagation of crack- 
ing in the structure. Some phenomena, such as the 
evolution of post-crack material parameters, aggre- 
gate interlocking, the interaction between concrete 
and reinforcement and multiple cracks opening 
and closing, still represent a research challenge. In 
the present study we propose an integrated model 
of post-cracking behavior incorporating those 
aspects which we regard as the salient ingredients 
of a realistic description of the overall behavior 
of reinforced concrete structures. The main charac- 
teristics of the model are: (1) a smeared represen- 
tation of cracks in which objectivity is preserved, and 
(2) the modeling of concrete-reinforcement inter-
action by a variable shear modulus and tension 
stiffening. 

Crack modeling 

In FE (finite element) analysis of reinforced con- 
crete, two types of crack models have been proposed. 
A discrete crack approach with predefined crack 
locations [l7] and with automatic crack pattern gen- 
eration [I81 have been investigated. The complex task 
of redefining the structural topology at each crack 
formation has stimulated the development of the 
so-called 'smeared crack' approach [lg]. In the 
smeared crack approach, automatic generation of 
cracks with arbitrary directions is achieved with small 
computational effort. Recent studies [2&22] have, in 
part, overcome the limitations of the original formu- 
lation, which did not deal with objectivity and local- 
ized fracture. The specific version of the smeared 
crack model adopted for this study is outlined in the 
following paragraph. 

The material is assumed to behave linearly under 
tensile stresses. When a maximum strength criterion 
is met, the material is assumed to crack in a plane 
orthogonal to the maximum tensile stress. This is 
represented by a modification of the material moduli 
in the principal stress frame and a gradual release of 
tension stress in the direction orthogonal to the crack. 
The Young's modulus in the direction orthogonal to 
the crack is set to zero, and the shear modulus relative 
to the crack plane is gradually decreased. This is 
described in greater detail later, in the section 'Shear 
transfer'. The method used for stress release can 
have considerable influence on the global response. 
No general method performs satisfactorily in all 
situations [23]. Two alternative procedures-tension 



softening and tension stiffening-are provided in this 
model in order to cope with most cases. 

Tension softening 

The formation and propagation of micro-cracks 
are largely responsible for the behavior of concrete in 
tension. Micro-cracks, which are initially distributed 
on a wide area, tend to localize in a fracture zone and 
originate a macrocrack as the stress approaches the 
tensile strength. Tension softening is a term used to 
characterize the evolution of the stress state within a 
fracture zone. 

The tension softening modei iilustratea in 1221 has 
the important property of objectivity in the sense that 
the prediced crack pattern is relatively mesh indepen- 
dent. The simple formulation makes its implemen- 
tation computationally efficient. In this model, which 
has been adopted in our work, the tensile stress after 
cracking decreases exponentially according to the 
following equation 

where f;is the tensile strength of concrete; E is the 
tensile strain in the direction orthogonal to the crack 
plane; E~ isf ;/Eo, Gfis the fracture energy of concrete, 
regarded as a material property, and I, is a character- 
istic length, here assumed equal to the cube root of 

Fig, 4, Tension stiffening model. 

Shear transfer 

The dowel action of the reinforcing steel and 
aggregate interlocking contribute to the considerable 
residual shear stiffness to the cracked concrete, and 
cannot be neglected in the analysis. Several stud- 
ies [25,29, 301 modeled this phenomenon by retaining 
a reduced, but non-zero, constant shear modulus for 
the cracked concrete. A more accurate procedure (311, 
adopted in this study, assumes that the cracked shear 
modulus, G *, decreases linearly with a:, the fictitious 
tensile strain normal to the crack. G* is set to zero 

Somea:',.2 6: for numerical experiments [30] 
suggest a range of 0.001-0.004 for a:,, with lower 
values for shear type fractures and higher values for the volume associated with the integration point 

where the crack occurred. 

The characteristic length I, establishes a depen-


flexural fractures. 

dence between the element size and the softening 
portion of the stress strain relation of the material, 

NONLINEAR SOLUTION METHODS 

The selection of the appropriate numerical pro- 
making the objectivity of the element possible. 

Tension stiffening 

cedure for the solution of the nonlinear problem in 
reinforced concrete FE analyses is of utmost import- 
ance. It has been found that in a highly nonlinear 

The concrete between consecutive cracks along the 
reinforcements can still transmit tension stresses, 
contributing thereby to the stiffness of the structure. 
This is the well known tension stiffening effect. In 
the context of the finite. element analysis of re-
inforced concrete, two methods have been suggested 
to account for this important effect: either an 
increase of the steel stiffness [24]; or a gradual de- 
crease of the tensile stress in the cracked concrete 
as opposed to an abrupt stress release [25,26]. 
Comparative studies [27,28] have shown the con-
siderable influence of the form of the descending 
branch on the global structural response. In 
this model we adopt a linear softening function 
represented in Fig. 4. 

The stiffening parameter a determines the import- 
ance of the effect. The strain corresponding to a 
complete stress release as a%. No general agreement 
on the choice for the value for a has been reached. 
Higher values of a seem more appropriate for flexural 
type crackhg, with an upper bound for elf, being the 
yield strain of the reinforcement. 

material such as concrete--which exhibits peculiar 
characteristics like cracking and strain softening-an 
inappropriate algorithm selection may prevent the 
convergence of the solution or produce a grossly 
mistaken one. On the other hand, one of the major 
obstacles to the diffusion of the FE analysis of 
concrete is the tremendous demand in computational 
resources involved in the solution of realistic prob- 
lems. Consequently, the efficiency of the adopted 
numerical procedure is as important as the accuracy 
of the constitutive model [32]. 

In displacement-based nonlinear FE analysis, 
where the basic unknowns are the displacements, 
three aspects of the solution are common to the 
various methods: the evaluation of the displacement 
increments, the computation of stresses given strains, 
and finally the definition of a convergence criterion. 

For the displacements evaluation a modified 
Newton-Rapson solution scheme has been adopted. 
It has been our experience that with this algorithm 
the load step size may have a substantial effect on the 
solution. In fact, with large load increments, the 
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initial trial displacement field may prematurely crack 
a large portion of the model. In reality, a more 
accurate stress redistribution would have relieved 
those high stresses and strains in the structure. This 
fact confirms that the numerical solution of re-
inforced concrete FE problems still requires an ex- 
perienced analyst for the selection of the appropriate 
parameters for the problem under examination. 

At each integration point (typically eight per ele- 
ment for the linear brick element) and for each iter- 
ation within each load step, the stresses correspond- 
ing to the current strain field have to be evaluated 
exactly in order to determine the out-of-balance 
forces. When the constitutive model is defined, as in 
this case, by an incremental fopmulation, these 
stresses are obtained by the following integration 

AU, = D dc,. (12)C"" 

The importance of this integration is twofold: first, an 
inaccurate stress recovery will make the equilibrium 
iteration useless; second, the large number of times 
that this integration has to be performed-which 
may well be in the order of lo6-lo7, requires par- 
ticular attention to the efficiency of its numerical 
implementation. 

The following 'midstep' approximation, which uses 
an average value of D,has been adopted for the stress 
increment 

Au,=($Dl+iD,D: bei,+ 

where D;+&'is function of =c' + Ac, and 
@ I,+ AI -,a '  + Di+yAci. The previous algorithm can 
be employed with subincrementation, but it is 
important to integrate the stresses starting from the 
last converged configuration. 

A convergence criterion has to terminate the 
equilibrium iteration as soon as the desired accuracy 
is achieved, but not before, and it should give the 
analyst complete control on the level of accuracy of 
the solution. Essentially, four quantities can be 
monitored during the iteration in order to establish a 
criterion: displacements, residual forces, incremental 
strain energy and some measure of the stiffness in the 
direction of the incremental displacement. Criteria 
based only on displacements or residuals can be 
misled by slow convergence rates. Energy criteria 
have proven to perform well in most cases [40]. The 
criteria chosen for this work can be expressed as 

where the tolerance is taken equal to lo-'. 

NUMERICAL RESULTS 

Deep beam analysis 

A classical benchmark of nonlinear finite element 
programs for the analysis of reinforced concrete beams 
is based on the experimental work by Leonhardt and 
Walther [l8]. In that work several deep beams were 
tested up to failure and the results have been exten- 
sively documented. The beam denoted in [18] as 
WT-3,has been modeled with the proposed element, 
and the numerical predictions and experimental re- 
sults are compared in the following paragraphs. 

The beam has width of 9.9cm. span of 160cm. 
and depth of 160cm. It is simply supported and 
subjected to a uniform load along its top edge. The 
dimensions and reinforcement arrangement are 
shown in Fig. 5(a). The main longitudinal reinforce- 
ment consists of four layers of two bars each 

898. St'IR Number of nodes: 120 
U Number of brick e l e m ~ n t r  :45 . . 

IO'cm Number of rebor elements: 30 

Fig. 3.-% beam example: (a) dimensions and reinforcements; (b) deep beam (DB) mesh. 
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Midrpan deflection (crn) 

Fig. 6. Deep beam example: (a) analytical and experimental top midspan deflections; (b) analytical 
bottom, center and top midspan deflection. 

anchored at the ends by means of hooks lying in a 
horizontal plane in order to prevent splitting. These 
bars have a diameter of 0.79 cm and a strength of 
536.431 MPa. The web reinforcement is formed by a 
double net of orthogonal bars which have a diameter 
of 0.51 cm and a strength of 235.12MPa. The con- 
crete uniaxial compressive strength, modulus of rup-
ture and initial Young's modulus are 29.649, 4.806 
and 31.7 x 1@ MPa, respectively. The strain associ- 
ated with the maximum uniaxial compressive stress is 
0.002. 

The deep beam described above has been modeled 
with three increasingly finer meshes denoted as SDB, 
MDB, and DB. SDB has 48 nodes and 15 brick 
elements, MDB is obtained from SDB by increasing 
the discretization in the lower rnidspan area to a total 
of 62 nodes and 21 brick elements, and finally DB, 
with 120 nodes and 45 bricks, as shown in Fig. 5(b), 
is the finer mesh. 

Analytical and experimental rnidspan load-
deflection curves are compared for the three meshes 
in Fig. 6a where relatively good agreement is ob- 
sewed. The failure load and deflection of the finer 
mesh are respectively 5% and 2% higher than the 
experimental ones. As expected, a stiffer response is 
obtained with the coarser mesh. In Fig. 6(b), the 
predicted deflections of the midspan at the bottom, 
center and top of the beam art plotted with the 
corresponding load for the DB mesh. The relative 
displacements of the three points show the nonlinear- 
ities which take place through the depth of the beam. 
The configuration at failure are shown in Fig. 7 for 
the DB mesh. In SDB and MDB the shear defor- 
mations in the support area are smaller than in DB. 
This is due in part to the shear locking effect of the 
linear isoparametric element, which is amplified by a 
course mesh. 

Finally in Fig. 8 the progression of the damage 
pattern is illustrated. The disks represent cracks, 
while the spikes c~mspond to 'crashing' of concrete. 

The material is said to crash when its stress state lies 
on the compressive softening branch of the constitu- 
tive model. The disks lie in the crack plane, and the 
segments plotted normally to the disks, represents the 
direction of the maximum tensile principal stress. 
Both symbols are located at the Gauss points where 
the failure conditions are met. 

The distribution of the structural damage is re-
ported at 37%, 68%, 84% and 100% of the failure 
load. At about 37% of the ultimate load the concrete 
in the support area starts entering the compression 
softening branch and tensile cracks occur at the 
bottom of the beam. The process gradually develops 
until instability is reached at a load of 135.1 ton due 
to crushing and cracking at the support areas. The 
previous analytical predictions are in good agreement 

Fig. 7. Deep beam example: magnified deformed configur- 
ation at failure. 
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ies Fig. 8. Deep beam example: (a) damage pattern at P = 49.44 ton; (b) damage pattern at P = 91.92 ton; 
:u- (c) damage pattern at P = 113.5 ton; (d) damage pattern at P = 135.1 ton. 
he 
he with the experimental results obtained in [18] where 
5s. failure load was reached at a load of 129.0 ton. 
:re 

Prestressed concrete reactor vessel analysis 

A prestressed concrete reactor vessel (PCRV) 
model, for which laboratory results are presented 
in [33], has also been studied with the proposed 
element in order to assess its behavior in a truly 
threedimensional state of stress. 

The PCRV model is fully described in [33]. A 
cylindrical concrete structure with a depth of 
101.6 cm and diameter of 101.6 cm, with an end slab 
on the top with a thickness of 31.75 cm is connected 
at the bottom to a steel disk with thickness of 
10.16 cm.The end slab contains six equally spaced 
cylindrical cavities. 

The PCRV is presented by two post-tensioning 
systems. A linear prestressing system of 60 steel rods 
of 1.91 cm of diameter is used to develop vertical 
compressive stresses, and a circumferential prestress- 
ing system of 0.15 cm diameter wires located on the 
outside surface of the PCRV develops radial and 
circumferential compressive stresses. The concrete 
uniaxial compressive strength and initial Young's 
modulus are 39.44 and 26.2 x lo3 MPa, respectively. 
The strain associated with the peak uniaxial compres- 
sive stress is 0.00263, and the Poisson's modulus 
is 0.15. For the steel, the Young's modulus is 
206.85 x I@ MPa, the Poisson's modulus is 0.3, and 
the yield strength is 275.8, 965.3 and 1930 MPa for 
the base plate, the vertical tendons, and the circum- 
femntial wins, respectively. After the prestressing 
forces are applied, the PCRV is pressurized with 
increasing internal pressure up to failure. 
Due to the symmetry of loading and geometry, 

o~llya 300 wedge of the PCRV has been modeled in 
the W t e  element analysis. Thimesh and the bound- 

ary conditions adopted in the model are shown in 
Fig. 9. 

In the analysis the prestressing forces are applied 
before the internal pressure in an incremental fashion. 

v - 0  

EEm 
1565 MPa /30° 

Fig. 9. PCRV example: finite element model. 
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Fig. 10. PCRV example: analytical and experimental slab 
midspan deflections. 

The pressure is then gradually applied to the vessel 
which reaches instability a t  21.580 MPa. The pre- 
dicted ultimate pressure favorably compares with 
the experimental failure pressure of 21.240 MPa. 
Figure 10 shows good agreement over the entire 
loading range between the analytical and experimen- 
tal deflections at the midspan of the end slab. Finally 
the deformed configurations corresponding to the 
prestressing forces only, and to 44%, 86%, and 100% 
of the ultimate internal pressure are presented in 
Fig. 11. At 50% of the failure pressure. cracking 
initiated at the center of the outside surface of the end 

slab, and crashing originated in regions around the 
penetration. The deformed configuration at failure 
suggests that the concentrated damage to the concrete 
surrounding the penetration strongly influenced the 
nonlinear response of the PCRV. 

CONCLUSIONS 

The field of finite element analysis of reinforced 
concrete structures, is gradually reaching maturity, 
after more than 20 years of research endeavor, and 
the emphasis is now on the reliability and compu- 
tational efficiency of the more sophisticated models 
being proposed for this type of analysis. This work 
presented our effort in this context, in particular the 
(1) extension and recalibration of an accurate and 
numerically efficient bounding surface model for the 
behavior of concrete in cyclic compression, (2) the 
development of a complete constitutive relation for 
reinforced concrete by combining the bounding sur- 
face model with numerical procedures for the model- 
ing of crack propagation, tension stiffening and steel 
reinforcement interaction effect, (3) the implemen- 
tation of the constitutive model in a three-dimen-
sional isoparametric eight-node element, and finally, 
(4) the verification of the accuracy of the current 
element by detailed analysis of a deep beam and a 
prestressed concrete reactor vessel which favorably 
compared with the experimental results. Recommen- 
dations for future work include the extension of 
dynamic analysis, and to the nonlinear analysis 
of reinforced concrete shells, as outlined in the 
following. 

Fig. I I .  PCRV example: magnified deformed configurations. (a) Prestressing force8 only; (b) 44% of 
faibre piwsure; (c) 86% of failure pressure; (d) failure pnssun. 



Analysis of reinforced 

Even though the adopted constitutive model for 
the behavior of concrete in compression allows 
(within the limitations previously presented) for the 
prediction of the rate independent cyclic response of 
the material, no attempt has been made to provide all 
the necessary additional features, such as bar slip and 
bond deterioration or the opening and closure of 
multiple cracks required for dynamic analysis. 
Alternative methods have been suggested [34-31 to 
cope with these problems and their incorporation in 
the proposed element would greatly enhance its range 
of applicability with a relatively modest additional 

Another important potential application of this 
work lies in the field of nonlinear reinforced concrete 
sheel analysis. The usual 'layered' shell elements, 
composed of layers assumed to be in plane state of 
stress, have several disadvantages [38] which suggest 
the use of a computationally efficient fully three- 
dimensional element. The proposed element is a good 
candidate for this class of problems and benchmark 
tests to check its accuracy in this context are desirable 
and should be undertaken. 
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APPENDIX: MATERUL PARAMETERS OF THE 

BOUNDING SURFACE MODEL 


Pre-failure parameters 

Elastic constants. Initial Poisson's ratio, v =0.17, initial 
Young's modulus modulus, E = 57,000(c~/Jf:), resulting 
in an initial shear modulus 

3NI et 01. 

Tangent bulk modulus. For hydrostatic loading 

For hydroaxis unloading 

Plastic shear modulus. For deviatoric loading 

K, is the value of K at the beginning of recent loading. 
For deviatoric unloading 

K, is the value of K at the beginning of reant unloading. 
Shear compac~ion-diIatancy factor. 

Post ./ailure parameters 

Shear modulus. G =50, tangent bulk modulus, 

dilatancy factor, = -1.971 exp(-U') and 

A = 1-0.2KL. 

Plastic shear modulus 

H p  - -0.15 exp(-O.OZS(K,, A IMF~I~,). 

where 

0.14 
F2(Il,) = (Ilsm)' -0.86 ' I,, <2.54 

F2(Ilgu) 0.025. 11, >2.54. 


