THERMOELASTIC STRESS-STRAIN REATIONS FOR AXISYMMETRIC PLANE STRAIN CONDITIONS AND ISOTROPIC MATERIAL

1. General Relations

For linear elastic isotropic material with temperature-independent materials properties the thermoelastic stress-strain relations for axisymmetric plane strain (polarsymmetric) conditions in the cylindrical coordinate system correspond to the set of Eqs. $[\mathrm{M}-11 \mathrm{~A} /(24)]$ with the shear strain components vanishing, thus:

$$
\begin{align*}
& \square_{r}=\frac{\partial u_{r}}{\partial r}=\frac{1}{\square}\left[\square_{r} \square \square\left(\square_{\square}+\square_{z}\right)\right]+\square \square(r), \tag{1a}\\
& \square_{\square}=\frac{u_{r}}{r}=\frac{1}{\square}\left[\square_{\square} \square \square\left(\square_{r}+\square_{z}\right)\right]+\square \square(r), \tag{1b}\\
& \square_{z}=\frac{\partial w}{\partial z}=\frac{1}{\square}\left[\square_{z} \square \square\left(\square_{r}+\square_{\square}\right)\right]+\square \square(r)=\text { const. } \tag{1c}
\end{align*}
$$

where u_{r} and $u(r)$ and $T(r)=T_{1}(r)-T_{0}$. The equilibrium conditions are reduced to:

$$
\frac{d \square_{r}}{d r}+\frac{\square_{r} \square \square_{\square}}{r}=0 .
$$

Solving Eqs. (1) for the stresses gives the following stress-displacement relations:

$$
\begin{align*}
& \left.\square_{r}=\frac{\square}{(1+\square)(1 \square 2 \square)} \square 1 \square \square\right) \frac{d u_{r}}{d r}+\square \frac{\square u_{r}}{\square}+\square_{2} \square(1+\square) \square \square(r) \square \\
& \left.\square_{\square}=\frac{\square}{(1+\square)(1 \square 2 \square)} \square 1 \square \square\right) \frac{u_{r}}{r}+\square \frac{\square u_{r}}{\square}+\square_{2} \square \square(1+\square) \square(r) \square \tag{3}\\
& \left.\square_{z}=\frac{\square}{(1+\square)(1 \square 2 \square)} \square 1 \square \square\right) \square_{z}+\square \frac{u_{r}}{\square}+\frac{d u_{r}}{d r} \square \square(1+\square) \square \square(r)
\end{align*}
$$

Substitution of these expressions into the equilibrium equations Eq. (2) renders an ordinary differential equation for the radial displacements $\mathrm{u}_{\mathrm{r}}=\mathrm{u}(\mathrm{r})$;

$$
\begin{equation*}
\frac{d^{2} u_{r}}{d r}+\frac{1}{r} \frac{d u_{r}}{d r} \square \frac{u_{r}}{r^{2}}=\frac{d}{d r} \square \frac{\square}{\square} \frac{d}{d r}\left(u_{r} r\right)_{\square}^{\square}=\frac{1+\square}{1 \square \square} \square \frac{d \square(r)}{d r} \tag{4}
\end{equation*}
$$

which has the general solution

$$
\begin{equation*}
u(r)=\frac{1+\square}{1 \square \square} \square \frac{1}{r} \square \square(r) d r+C_{1} r+\frac{C_{2}}{r}, \tag{5}
\end{equation*}
$$

where C_{1} and C_{2} are constants of integration.
Utilizing Eq. (5) in Eqs. (1) and (3) yields the following expressions for the strain components and the stress components:

$$
\begin{align*}
& \square_{r}=\frac{1+\square}{1 \square \square} \square \square \frac{1}{r^{2}}{\underset{r=r_{i}}{r} \square(r) d r}_{\square}^{\square}+C_{1} \square \frac{C_{2}}{r^{2}}, \tag{6a}\\
& \square_{b}=\frac{1+\square}{1 \square \square} \square \frac{1}{r^{2}}{ }_{r=r_{i}}^{r} \square(r) d r+C_{1}+\frac{C_{2}}{r^{2}} \text {; } \tag{6b}\\
& \square_{r}(r)=\frac{\square \square}{1 \square \square} \frac{1}{r^{2}}{\underset{r=r_{i}}{r} \square(r) d r+\frac{\square}{1+\square} \square \frac{\square}{\square 1 \square 2 \square} \square \frac{C_{2}}{r^{2}} \frac{\square]_{k}}{1 \square 2 \square} \square^{\square},}^{\square} \tag{7a}\\
& \square_{\square}(r)=\frac{\square \square}{1 \square \square} \frac{1}{r^{2}} \prod_{r=r_{i}}^{r} \square(r) d r \square \frac{\square \square}{1 \square \square} \square(r)+\frac{\square}{1+\square} \frac{\square}{\square \square 2 \square}+\frac{C_{1}}{r^{2}}+\frac{C_{2}}{1 \square 2 \square \square}, \tag{7b}\\
& \square_{z}(r)=\square \frac{\square \square}{1 \square \square} \square(r)+\frac{\square}{(1+\square)(1 \square 2 \square)}\left[2 \square C_{1}+(1 \square \square) \square_{z}\right] . \tag{7c}
\end{align*}
$$

The constants C_{1} and C_{2} have to be determined from the boundary conditions for the radial stresses, respectively the radial displacements at the curved cylinder surfaces. The value of the constant \square [see Eq. (1c)] follows from the boundary conditions at the cylinder ends.

2. Axial Boundary Conditions

a) In the case of rigid support of the cylinder ends in z-direction: $w=0$ and $\square=0$, so that Eq. (7c) reduces to:

$$
\begin{equation*}
\square_{z}=\square \frac{\square \square}{1 \square \square} \square(r)+\frac{2 \square \square}{(1+\square)(1 \square 2 \square)} C_{1} . \tag{8}
\end{equation*}
$$

b) If in the case of free cylinder ends there are no axial external forces acting on the cylinder, the resultant of the axial stresses must vanish at the cylinder ends, i.e. the axial stresses \square_{z} must form an equilibrium system:

$$
\begin{equation*}
\underset{(A)}{\bigsqcup_{z}} d A=2 \square \square_{r=r_{i}}^{\square} r_{z} r d r=0 \tag{9}
\end{equation*}
$$

utilizing Eq. (7c), this condition becomes:

$$
\begin{equation*}
\square \frac{2 \square \square \square}{1 \square \square} \square_{r=r_{i}}^{r_{o}} \square(r) d r+\frac{\square \square\left(r_{o}^{2} \square r_{i}^{2}\right)}{(1+\square)(1 \square 2 \square)}\left[2 \square C_{1}+(1 \square \square) \square\right]=0 . \tag{10}
\end{equation*}
$$

c) If the cylinder body is subjected to tensile forces acting along the cylinder axis, the following relation holds:
$\underset{(A)}{\square} \square_{z} d A=P$.
In all three cases a), b), and c) the radial stresses \square_{r} and the tangential stresses \square_{\square} in the central region of a long cylinder remain unaffected by the boundary conditions at the end faces of the cylinder.

3. Hollow Cylinder Subjected to Polarsymmetric Temperature Field and Uniformly Distributed Pressure Loading of the Cylindrical Surfaces

The radial stress boundary conditions for a hollow cylinder, $r_{i} \square r \square r_{a}$, subjected to uniformly distributed loading of the internal and external curved surfaces for pressure loading are:

$$
\begin{equation*}
\left(\square_{r}\right)_{r=r_{i}}=\square p_{i}, \quad\left(\square_{r}\right)_{r=r_{o}}=\square p_{o} ; \tag{12}
\end{equation*}
$$

for tensile loading positive signs are valid. Substitution of these boundary conditions into Eqs. (7a) renders the required relations for the constants of integration. The boundary condition $\left(\square_{r}\right)_{r=r_{i}}=\square p_{i}$ yields:

$$
\begin{equation*}
C_{2}=\frac{p_{i}(1+\square) r_{i}^{2}}{\square}+\frac{C_{1} r_{i}^{2}}{1 \square 2 \square}+\frac{\square \square r_{i}^{2}}{1 \square 2 \square}, \tag{13}
\end{equation*}
$$

from the boundary condition $\left(\square_{r}\right)_{r=r_{o}}=\square p_{o}$ there follows:
$\frac{\square C_{1}}{(1+\square)(1 \square 2 \square)}=\frac{p_{i} r_{i}^{2} \square p_{o} r_{o}^{2}}{r_{o}^{2} \square r_{i}^{2}}+\frac{\square \square}{(1 \square \square)\left(r_{o}^{2} \square r_{i}^{2}\right)_{r_{i}}^{r_{o}}} \stackrel{\square}{\square}(r) d r \square \frac{\square \square \square_{i}}{(1+\square)(1 \square 2 \square)}$,
and thus

$$
\begin{equation*}
\frac{\square C_{2}}{1+\square}=\left(p_{i} \square p_{o}\right) \frac{r_{i}^{2} r_{o}^{2}}{\left(r_{o}^{2} \square r_{i}^{2}\right)}+\frac{\square \square r_{i}^{2}}{(1 \square \square)\left(r_{o}^{2} \square r_{i}^{2}\right)}{ }_{r_{i}}^{r_{o}} \overbrace{\square}(r) d r \text {. } \tag{15}
\end{equation*}
$$

Substituting the relations obtained for the constants C_{1} and C_{2}, Eqs. (14) and (15), into the expression for the radial displacement, Eq. (5), gives:

$$
\begin{align*}
& \frac{\square u_{r}}{1+\square}=\frac{\square \square}{(1 \square \square) r} \square_{r_{i}}^{r} \square(r) d r+\frac{\square \square}{(1 \square \square)\left(r_{o}^{2} \square r_{i}^{2}\right)}-(1 \square 2 \square) r+\frac{r_{i}^{2}}{r}-\frac{\square}{-}-(r) d r \tag{16}\\
& \left.+\frac{p_{i} r_{i}^{2}}{\left(r_{o}^{2} \square r_{i}^{2}\right)} \exists^{\square} 1 \square 2 \square\right) r+\frac{r_{0}^{2}}{r} \square \frac{p_{o} r_{o}^{2}}{\left(r_{o}^{2} \square r_{i}^{2}\right)} \square^{\square}(1 \square 2 \square) r+\frac{r_{i}^{2}}{r} \square \frac{\square \square \square r}{1+\square} .
\end{align*}
$$

This solution is being introduced into Eqs. (1) in order to obtain relations for the stress components:

$$
\begin{align*}
& \square \frac{p_{o} r_{o}^{2}}{\left(r_{o}^{2} \square r_{i}^{2}\right)}-\frac{r_{i}^{2}}{r^{2}}- \tag{17}\\
& \square_{\square}=\frac{\square \square}{(1 \square \square) r^{2}}{ }_{r_{i}}^{r} \square \square(r) d r \square \frac{\square \square \square(r)}{(1 \square \square)}+\frac{\square \square}{(1 \square \square)\left(r_{o}^{2} \square r_{i}^{2}\right)}-\frac{\square}{\square}+\frac{r_{i}^{2}}{r^{2}} \square_{-i}^{-i} \square(r) d r \tag{18}\\
& +\frac{p_{i} r_{i}^{2}}{\left(r_{o}^{2} \square r_{i}^{2}\right)}-\frac{r_{0}^{2}}{r^{2}} \square \frac{p_{o} r_{o}^{2}}{\left(r_{o}^{2} \square r_{i}^{2}\right)}+\frac{r_{i}^{2} \square}{r^{2}} \theta \\
& \square_{z}=\square \square \square \frac{\square \square \square(r)}{(1 \square \square)}+\frac{2 \square \square \square}{(1 \square \square)\left(r_{o}^{2} \square r_{i}^{2}\right)} \stackrel{r}{o}_{r_{i}}^{\square} \square(r) d r+2 \square \frac{\left(p_{i} r_{i}^{2} \square p_{o} r_{o}^{2}\right)}{\left(r_{o}^{2} \square r_{i}^{2}\right)} . \tag{19}
\end{align*}
$$

4. Special Case: Hollow Cylinder Subjected to Pressure Loading in Isothermal Condition

In the special case

$$
\begin{equation*}
\left(\square_{r}\right)_{r=r_{i}}=\square p_{i}, \quad\left(\square_{r}\right)_{r=r_{o}}=\square p_{o}, \quad \mathrm{~T}(\mathrm{r})=0 \tag{20}
\end{equation*}
$$

the following expressions for the stress components are obtained from Eqs. (17), (18), and (19), (e.g. TIMOSHENKO/GOODIER, p. 50; KANTOROWITSCH, p. 25)

$$
\begin{align*}
& \square_{r}=\frac{1}{r_{o}^{2} \square r_{i}^{2}} \square\left(p_{o} \square p_{i}\right) \frac{r_{i}^{2} r_{o}^{2}}{r^{2}}+p_{i} r_{i}^{2} \square p_{o} r_{o}^{2} \square \tag{21}\\
& \square_{r}=\frac{1}{r_{o}^{2} \square r_{i}^{2}} \square\left(p_{o} \square p_{i}\right) \frac{r_{i}^{2} r_{o}^{2}}{r^{2}}+p_{i} r_{i}^{2} \square p_{o} r_{o}^{2} \square . \tag{22}
\end{align*}
$$

Specially for $\mathrm{p}_{\mathrm{i}} \neq 0, \mathrm{p}_{\mathrm{o}}=0$:
$\square_{r}=p_{i} \frac{r_{i}^{2}}{r_{o}^{2} \square r_{i}^{2}} \square \square \frac{\square r_{o} \square^{2} \square}{\square} \square_{\square}=\frac{p_{i}}{\square_{o}^{2} \square 1} \frac{\square}{G}+\frac{r_{o}^{2} \square \square}{r^{2}} \square$

where $\square_{o}=\frac{r_{o}}{r_{i}}$; and for $\mathrm{p}_{\mathrm{i}}=0, \mathrm{p}_{\mathrm{o}} \neq 0$:
$\square_{r}=\square p_{o} \frac{r_{o}^{2}}{r_{o}^{2} \square r_{i}^{2}} \square_{\square}^{\square r_{i} \square^{2} \square} \square_{r}=\square \frac{p_{o} \square_{o}^{2}}{\square_{o}^{2} \square 1} \frac{\square}{G}+\frac{r_{i}^{2} \square \square}{r^{2}} \square \square$
$\square_{\square}=p_{o} \frac{r_{o}^{2}}{r_{o}^{2} \square r_{i}^{2}} \frac{\square}{G}+\frac{\square r_{i} \square^{2} \square}{\square} \square \square_{r}=\square \frac{p_{o} \square_{o}^{2}}{\square_{0}^{2} \square 1} \square+\frac{r_{i}^{2}}{r^{2}} \square \frac{\square}{\square}$
For the axial stresses \square_{z}, according to the end conditions the following relations hold:
a) for the hollow cylinder with open ends:

$$
\begin{equation*}
\square_{z}=0 ; \tag{25a}
\end{equation*}
$$

b) for the hollow cylinder with closed ends:

$$
\begin{equation*}
\square_{z}=\frac{p_{i} r_{i}^{2} \square p_{o} r_{o}^{2}}{r_{o}^{2} \square r_{i}^{2}} \tag{25b}
\end{equation*}
$$

c) for the hollow cylinder with open ends and axially rigidly restrained end faces:

$$
\begin{equation*}
\square_{z}=\square\left(\square_{r}+\square_{\square}\right)=2 \square \frac{p_{i} r_{i}^{2} \square p_{o} r_{o}^{2}}{r_{o}^{2} \square r_{i}^{2}} . \tag{25c}
\end{equation*}
$$

In these three cases the following expressions for the radial displacement are obtained:
a) for the hollow cylinder with open ends:

$$
\begin{equation*}
u_{r}=r \square_{\square}=\frac{r}{\square}\left(\square_{\square} \square \square_{r}\right)=\frac{1 \square \square p_{i} r_{i}^{2} \square p_{o} r_{o}^{2}}{\square} \frac{1+\square}{r_{o}^{2} \square r_{i}^{2}}+\frac{\left(p_{i} \square p_{o}\right) r_{i}^{2} r_{o}^{2}}{\square} \tag{26a}
\end{equation*}
$$

Specially for $\mathrm{p}_{\mathrm{i}} \neq 0, \mathrm{p}_{\mathrm{o}}=0$:

$$
\begin{equation*}
u_{r}=\frac{(1 \square \square)}{\square} \frac{p_{i} r_{i}^{2}}{r_{o}^{2} \square r_{i}^{2}}+\frac{(1+\square)}{\square} \frac{p_{i} r_{i}^{2} r_{o}^{2}}{\left(r_{o}^{2} \square r_{i}^{2}\right) r}, \tag{26a’}
\end{equation*}
$$

$$
\left(u_{r}\right)_{r=r_{i}}=\frac{p_{i} r_{i}^{2}}{\square\left(r_{o}^{2} \square r_{i}^{2}\right)}\left[(1 \square \square) r_{i}^{2}+(1+\square) r_{o}^{2}\right], \quad\left(u_{r}\right)_{r=r_{o}}=\frac{2 p_{i} r_{i}^{2} r_{o}}{\square\left(r_{o}^{2} \square r_{i}^{2}\right)}
$$

Since

$$
\frac{\left(u_{r}\right)_{r=r_{i}}}{\left(u_{r}\right)_{r=r_{o}}}=(1 \square \square) \frac{r_{i}}{2 r_{o}}+(1+\square) \frac{r_{o}}{2 r_{i}}>1
$$

there is $\left(u_{r}\right)_{r=r_{i}}>\left(u_{r}\right)_{r=r_{o}}$, which means that the wall thickness is decreasing.
Specially for $\mathrm{p}_{\mathrm{i}}=0, \mathrm{p}_{\mathrm{o}} \neq 0$:

$$
\begin{align*}
& u_{r}=\square \frac{1 \square \square}{\square} \frac{p_{o} r_{o}^{2}}{r_{o}^{2} \square r_{i}^{2}} r \square \frac{1+\square}{\square} \frac{p_{o} r_{i}^{2} r_{o}^{2}}{\left(r_{o}^{2} \square r_{i}^{2}\right) r} \\
& \left(u_{r}\right)_{r=r_{i}}=\square \frac{2 p_{o} r_{i} r_{o}^{2}}{\square\left(r_{o}^{2} \square r_{i}^{2}\right)}, \quad\left(u_{r}\right)_{r=r_{o}}=\square \frac{p_{o} r_{o}}{\square\left(r_{o}^{2} \square r_{i}^{2}\right)}\left[(1 \square \square) r_{o}^{2}+(1+\square) r_{i}^{2}\right]
\end{align*}
$$

b) for the hollow cylinder with closed ends:

$$
\begin{equation*}
u_{r}=\frac{r}{\square}\left[\square_{\square} \square \square\left(\square_{r}+\square_{z}\right)\right]=\frac{1 \square 2 \square}{\square} \frac{p_{i} r_{i}^{2} \square p_{o} r_{o}^{2}}{r_{o}^{2} \square r_{i}^{2}} r+\frac{1+\square}{\square} \frac{\left(p_{i} \square p_{o}\right) r_{i}^{2} r_{o}^{2}}{\left(r_{o}^{2} \square r_{i}^{2}\right) r} ; \tag{26b}
\end{equation*}
$$

c) for the hollow cylinder with open ends and axially restrained end faces:

$$
\begin{equation*}
u_{r}=\frac{r}{\square}\left[\square_{\square} \square \square\left(\square_{r}+\square_{z}\right)\right]=\frac{1 \square \square \square 2 \square^{2}}{\square} \frac{p_{i} r_{i}^{2} \square p_{o} r_{o}^{2}}{r_{o}^{2} \square r_{i}^{2}} r+\frac{1+\square}{\square} \frac{\left(p_{i} \square p_{o}\right) r_{i}^{2} r_{o}^{2}}{\left(r_{o}^{2} \square r_{i}^{2}\right) r} \tag{26c}
\end{equation*}
$$

5. Special Case: Hollow Cylinder Subjected to Polarsymmetric Temperature Field T(r)

5.1 General Relations

In the special case

$$
\begin{equation*}
\left(\square_{r}\right)_{r=r_{i}, r_{o}}=0, \quad \mathrm{~T}(\mathrm{r})=\mathrm{f}(\mathrm{r}) \tag{27}
\end{equation*}
$$

Eqs. (17) and (18) reduce to (see e.g. BOLEY/WEINER, p.290):

$$
\begin{align*}
& \square_{r}=\frac{\square \square}{(1 \square \square) r^{2}} \frac{\square_{r}^{2} \square r_{i}^{2}}{-r_{o}^{2} \square r_{i}^{2}} \square_{n_{i}} \square(r) d r \square \square_{r_{i}}^{r} \square(r) d r \square \text {, } \tag{28}
\end{align*}
$$

The axial stresses obtained from Eq. (21) for the case of axially rigidly constrained cylinder ends, i.e. $w=0, \square=0$, are:

$$
\begin{equation*}
\square_{z}=\frac{2 \square \square \square}{(1 \square D)\left(r_{o}^{2} \square r_{i}^{2}\right)} r_{n}^{r_{o}} \square \square(r) d r \square \frac{\square \square}{1 \square \square} \square(r) \tag{30a}
\end{equation*}
$$

and for the case of free cylinder end faces:

$$
\begin{equation*}
\square_{z}=\square_{r}+\square_{\square}=\frac{\square \square}{1 \square \square \square_{o}^{2} \square r_{i}^{2}}{ }_{r_{i}}^{r_{o}} \square(r) d r \square \square(r) \tag{30b}
\end{equation*}
$$

The expression for the radial displacement u_{r} follows from the general relation Eq. (16):

$$
\begin{equation*}
\left.u_{r}=\frac{\square}{r(1 \square \square)} G^{(1+\square)}\right)_{n}^{r} \square(r) d r+\frac{r^{2}(1 \square 3 \square)+r_{i}^{2}(1+\square)^{r_{o}}}{r_{o}^{2} \square r_{i}^{2}} \square_{r_{i}} \square(r) d r \square . \tag{31}
\end{equation*}
$$

Herewith the values for the radial displacement at the curved surfaces are:

In the case of axially rigidly constrained cylinder end faces, i.e. $\mathrm{w}=0, \square=0$, the radial displacement is:

$$
\begin{equation*}
u_{r}=\frac{1+\square \square}{1 \square \square} \square_{\square}^{\square}(r) d r+\frac{r^{2}(1 \square 2 \square)+r_{i}^{2} r_{0}}{r_{o}^{2} \square r_{i}^{2}} \sum_{n} \square(r) d r \square . \tag{33}
\end{equation*}
$$

Introducing an average temperature value

$$
\begin{equation*}
\hat{\square}=\frac{\square_{0 r_{i}}^{2 \square r_{o}} \square(r) d r d \square}{\prod_{0 r_{i}}^{2 \square r_{o}} d r d \square}=\frac{2}{r_{o}^{2} \square r_{i}^{2}}{ }_{n_{i}}^{r_{o}} \| \square(r) d r ; \tag{34}
\end{equation*}
$$

and a temperature averaged over the interval from r_{i} to r, designated \#\#\#\# yields simplified forms of the thermal stress relations Eqs. (28), (29) and (30):

$$
\begin{align*}
& \square_{z}=\frac{\square \square}{(1 \square D)}\left(\hat{\square} \square \hat{\square}_{r}\right) \text {. } \tag{36}
\end{align*}
$$

5.2 Simplified Equations for the Thin-Walled Hollow Cylinder

Introducing

$$
\begin{equation*}
t=r_{o} \square r_{i}, \tag{38}
\end{equation*}
$$

designating the wall thickness of the hollow cylinder, the following relations hold

$$
\begin{equation*}
r_{o}=r_{i}+t, \quad r=r_{i}+x(0 \square x \square t), \quad \mathrm{dr}=\mathrm{dx} . \tag{39}
\end{equation*}
$$

Considering a thin-walled hollow cylinder, $\mathrm{t} \ll \mathrm{r}_{\mathrm{i}}$, and neglecting terms of the order t^{2} compared with terms of order $\left(\mathrm{r}_{\mathrm{i}} \mathrm{t}\right)$, gives the following approximate expressions:

$$
\begin{align*}
& r^{2} \square r_{i}^{2}=r_{i}^{2}+2 r_{i} x+x^{2} \square r_{i}^{2}=2 r_{i} x+x^{2} \square 2 r_{i} x, \\
& r^{2}+r_{i}^{2}=r_{i}^{2}+2 r_{i} x+x^{2}+r_{i}^{2}=2 r_{i}^{2}+2 r_{i} x+x^{2} \square 2 r_{i}^{2}, ~ \text {, 品 } \tag{40}\\
& r_{o}^{2} \square r_{i}^{2}=r_{i}^{2}+2 r_{i} t+t^{2} \square r_{i}^{2}=2 r_{i} t+t^{2} \square 2 r_{i} t .
\end{align*}
$$

Further, replacing all radii by a mean radius R, i.e. let

$$
\begin{equation*}
r_{i} \square r_{i}+x \square r_{o} \square R, \tag{41}
\end{equation*}
$$

reduces the exact relations, Eqs. (28), (29) and (30b), to the approximate expressions:

Neglecting in these expressions terms with the factor $\frac{\square t}{R}$ which are small as compared with T , renders the approximate thermoelastic equations for the stress components in a thin-walled cylindrical shell:

$$
\begin{equation*}
\square_{r} \square 0, \quad \square_{\square} \square \square_{z} \square \frac{\square \square}{1 \square \square \bar{\square} \overline{l_{1}}}{ }_{0}^{t} \square_{0} d x \square \square_{\square}^{\square} \tag{43}
\end{equation*}
$$

6. Hollow Cylinder Consisting of Coaxial Layers, Subjected to a Polarsymmetric Temperature Field, as an Approximate Model for the Radially Inhomogeneous Hollow Cylinder

A hollow cylinder, $r_{i} \square r \square r_{o}$, having radially varying thermoelastic properties $\mathrm{E}(\mathrm{r}), \square(\mathrm{r})$, $\square(\mathrm{r})$, in practical engineering analysis of the thermoelastic stress-strain field can be approximated by considering the hollow cylinder to consist of n coaxial layers each having constant material properties.
Thereby, the differential equation for the radial displacement in the axisymmetric plane (polarsymmetric) case, incorporating material properties as functions of the radial coordinate,
$\frac{d^{2} u}{d r}+\frac{1}{r} \frac{d u}{d r} \square \frac{u}{r^{2}} \square \frac{1+\square(r)}{1 \square \square(r)} \frac{d}{d r}[\square(r) \square(r)]+\frac{1}{\square(r)} \frac{\square d u}{\square d r} \square \frac{1+\square(r)}{1 \square \square(r)} \frac{\square}{\square}+\square_{r} \frac{\square d \square(r)}{\square} \frac{\square}{\square}$,
reduces to n coupled differential equations for the individual layers in each of which the materials properties have constant values. For the k-t layer the differential equation for the radial displacement reads:
$\frac{d^{2} u_{k}}{d r}+\frac{1}{r} \frac{d u_{k}}{d r} \square \frac{u_{k}}{r^{2}}=\frac{1+\square_{k}}{1 \square \square_{k}} \frac{d}{d r}\left[\square_{k} \square(r)\right], \quad \mathrm{k}=1,2, \ldots . \mathrm{n}$.
Corresponding to Eqs. (5), (6), and (7) one obtains:
$u_{k}(r)=\frac{1+\square_{k}}{1 \square \square_{k}} \frac{\square_{k}}{r^{2}} \frac{r}{\eta_{i}} \square(r) d r+C_{1 k} r+\frac{C_{2 k}}{r}$,
$\square_{n_{k}}(r)=\frac{1+\square_{k}}{1 \square \square_{k}} \square_{k} \square(r) \square \frac{\square_{k}}{r^{2}} \square_{r_{i}}^{r} \square(r) d r \square+C_{1 k} \square \frac{C_{2 k}}{r^{2}}$,
$\square_{\square_{k}}(r)=\frac{1+\square_{k}}{1 \square \square_{k}} \frac{\square_{k}}{r^{2}}{ }_{r_{i}}^{r} \square(r) d r+C_{1 k}+\frac{C_{2 k}}{r^{2}}$;
$\square_{r_{k}}(r)=\stackrel{\square}{\square} \frac{\square_{k}}{\left(1 \square \square_{k}\right) r^{2}}{ }^{r} \square_{i} \square(r) d r+\frac{1}{1+\square_{k}} \frac{\square C_{1 k}+\square_{k} \square_{k}}{1 \square 2 \square_{k}} \square \frac{C_{2 k}}{r^{2}} \square_{\square}^{\square} \square_{k}$,

The 2 n constants of integration in the above equations are determined means of the boundary conditions for the total hollow cylinder

and by means of the continuity conditions for the radial stresses at the interfaces

as well as by the corresponding continuity conditions for the deformation

$$
\begin{equation*}
C_{1 k} r_{k o}+\frac{C_{2 k}}{r_{k o}}+\frac{\left(1+\square_{k}\right) \square_{k}^{r_{k}}}{\left(1 \square \square_{k}\right) r_{k o}} \square_{\text {ni }} \square(r) d r \square C_{1(k+1)} r_{(k+1) i} \square \frac{C_{2(k+1)}}{r_{(k+1) i}}=0, \tag{50b}
\end{equation*}
$$

As far as the boundary conditions at the cylinder end faces are concerned in the case of rigid axial restraint of the end faces, there is the axial strain condition: $\square=0$; in the case of free end faces, loaded by an axial resultant force P_{z} there is the equilibrium condition:

7. Bibliography

See e.g.
S. Timoshenko and J.N. Goodier: Theory of Elasticity. McGraw-Hill Book Company, Inc., New York 1951.
S.B. Kantorovich: Die Festigkeit der Apparate und Maschinen fur die chemische Industrie. VEB Verlag Technik, 1955.
B.A. Boley and J.H. Weiner: Theory of Thermal Stresses. John Wiley \& Sons, New York 1960.

