Large and Small Break LOCA Analysis/Result

Course 22.39, Lecture 15 11/1/06 Professor Neil Todreas

Event Categories (from Lillington, UK)

Category	Description	Frequency/Reactor	
1	Conditions that occur regularly in normal operation	~10	
2	Faults that are expected during the life of the plant: Anticipated moderately frequent events requiring safety response	~1	
3	Faults not expected during the life of a particular plant: Anticipated infrequent events requiring safety response	~10 ⁻²	
4	Improbable events not expected to occur in the nuclear industry but provided for by the design	~10 ⁻⁴	
5	Extremely improbable events not provided for in the design of the plant	~10 ⁻⁶	

Figure by MIT OCW. After Lillington, 1995.

Example Events (from Lillington, UK)

Events	Categories
Bringing the Reactor to Full Power	1
Loss of External Grid Loss of Feedwater Loss of Reactor Coolant Pump	2
Small LOCA Valves Open	3
Large LOCA Main Steam Line Break	4
LOCAs without ECCS Transients with Total Loss of ON- and Off-Site Power	5

Figure by MIT OCW. After Lillington, 1995.

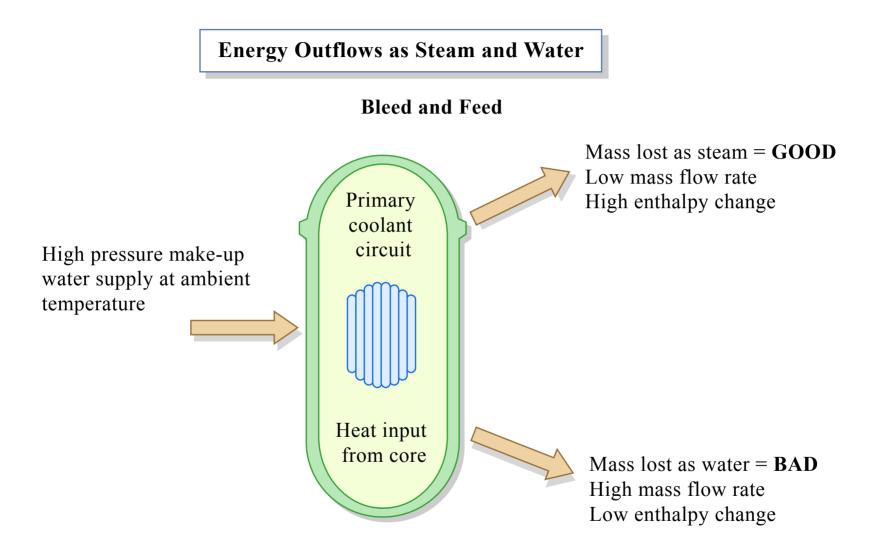
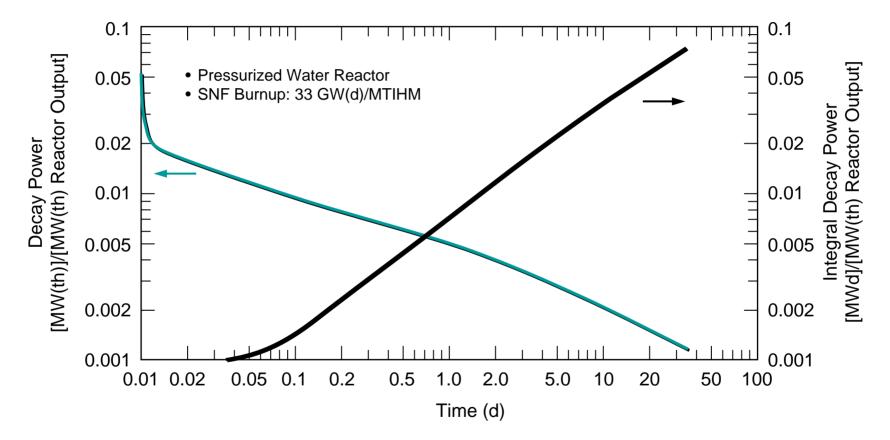
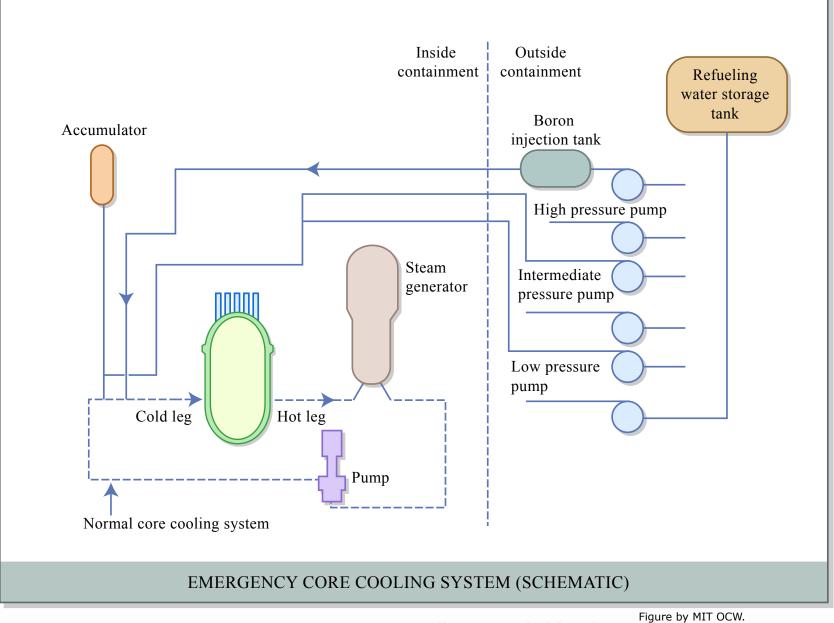



Figure by MIT OCW.

Decay Power and Integral Decay Power As A Function of Time

By Charles Forsberg. Courtesy of Oak Ridge National Laboratory.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


11/1/06

22.39 Lecture 15: Large Break LOCA Analysis/Result Professor Neil Todreas 5

05-017

Diagrammatic representation of PWR primary and secondary circuits and the emergency cooling systems

Diagram removed due to copyright restrictions. Figure 4.4 in Collier, J. G., and G. F. Hewitt. *Introduction to Nuclear Power*. Washington, DC: Hemisphere Publishing, 1987.

Connection pipe diameter/cross section/percentage spectrum of a PWR. (Solid lines) Primary loop system; (dashed lines) pressurizer

Diagram removed due to copyright restrictions. Figure 4.21 in Collier, J. G., and G. F. Hewitt. *Introduction to Nuclear Power*. Washington, DC: Hemisphere Publishing, 1987.

Appendix C: Basic Assumptions of the LOCA

- 1. The reactor has been operating for an infinite period of time at an assumed slight overpower condition. No power or other transient preceeds the accident.
- 2. Peak core power density or linear power generation is at the maximum allowable value.
- 3. A double-ended rupture of <u>one</u> primary coolant loop is assumed (largest existing pipe)

PWR: rupture of cold leg imposes most severe conditions

BWR: rupture of a recirculation loop

Remaining intact loops continue their operation as dictated by available electric supply or stored rotational energy.

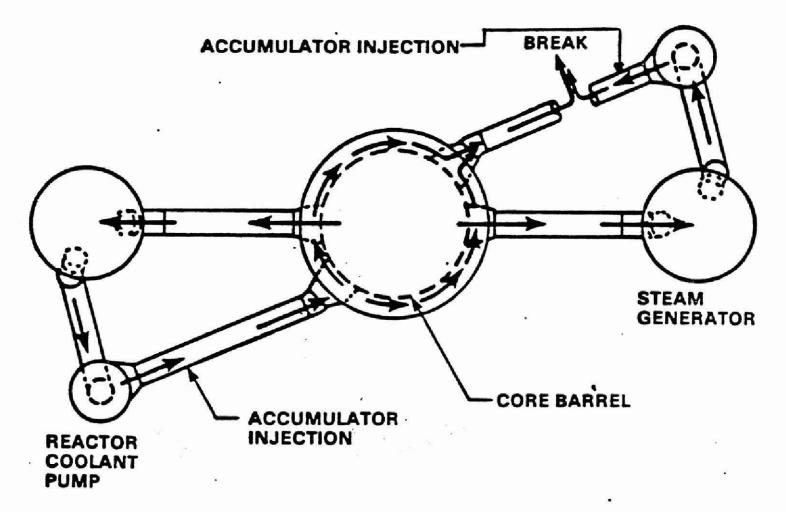
4. Off-site power is lost upon initiation of the accident and is restored after several days. (continued)

- 5. Reactor scram systems need not contribute to the nuclear shut down because voiding of the core provides sufficient negative reactivity for shutdown.
- 6. The reactor is isolated after the initiation of the accident, i.e. the regular heat sink is removed.

PWR: Upon initiation of the accident the steam generators are isolated on the secondary side by closing the steam supply valves and the feedwater valves.

BWR: Upon receipt of a reactor-vessel low-water signal the main steam isolation valves close within 10 seconds. Feedwater flow ramps to zero within four seconds. (continued)

- 7. EECS are actuated automatically by appropriate signals. No corrective operator action is assumed for the first 10 minutes following initiation of the accident.
- 8. A single failure criterion is applied to the reactor system whereby an additional fault is postulated which may render inoperative any <u>one</u> of the following:
 - Mechanical active components (e.g. pump)
 - > Active or passive electrical components


Events in the reactor pressure vessel during a large-break LOCA. a) Normal operation; b) blowdown phase; c) refill phase; d) reflood phase

> Diagram removed due to copyright restrictions. Figure 4.18 in Collier, J. G., and G. F. Hewitt. *Introduction to Nuclear Power*. Washington, DC: Hemisphere Publishing, 1987.

PWR operating conditions

Diagram removed due to copyright restrictions. Figure 4.5 in Collier, J. G., and G. F. Hewitt. *Introduction to Nuclear Power*. Washington, DC: Hemisphere Publishing, 1987.

Cold Leg Break Steam Flow Path

Courtesy of Westinghouse. Used with permission.

Adiabatic heat-up for PWR fuel (17 x 17)

Diagram removed due to copyright restrictions. Figure 4.1 in Collier, J. G., and G. F. Hewitt. *Introduction to Nuclear Power*. Washington, DC: Hemisphere Publishing, 1987.

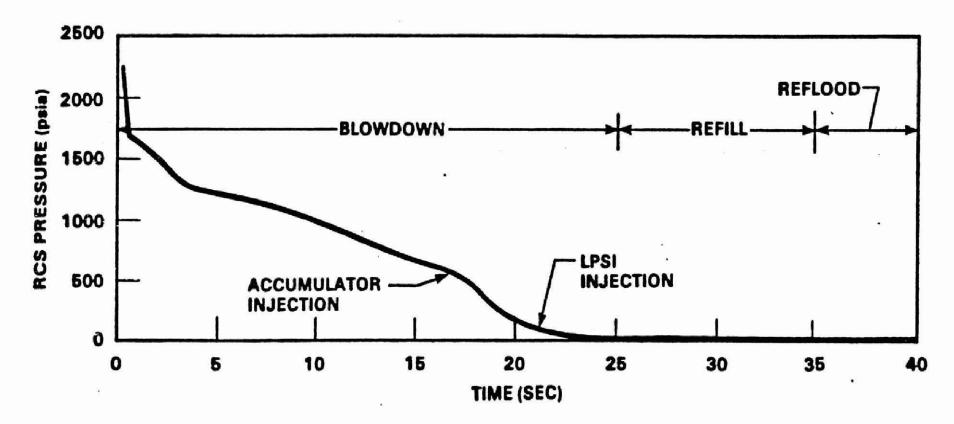
NRC Appendix K Criteria

- 1) <u>Peak Cladding Temperature</u>. The calculated maximum fuel element cladding temperature shall not exceed 2200° F.
- 2) <u>Maximum Cladding Oxidation</u>. The calculated total oxidation of the cladding shall nowhere exceed 0.17 times the total cladding thickness before oxidation.
- 3) <u>Maximum Hydrogen Generation</u>. The calculated total amount of hydrogen generated from the chemical reaction of the cladding with water or steam shall not exceed 0.01 times the hypothetical amount that would be generated if all the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react.
- 4) <u>Coolable Geometry</u>. Calculated changes in core geometry shall be such that the core remains amenable to cooling.
- 5) <u>Long-Term Cooling</u>. After any calculated successful initial operation of the ECCS, the calculated core temperature shall be maintained at an acceptable low value and decay heat removed for the extended period of time required by the long-lived radioactivity remaining in the core.

Variation of peak clad temperature with time for a large-break LOCA

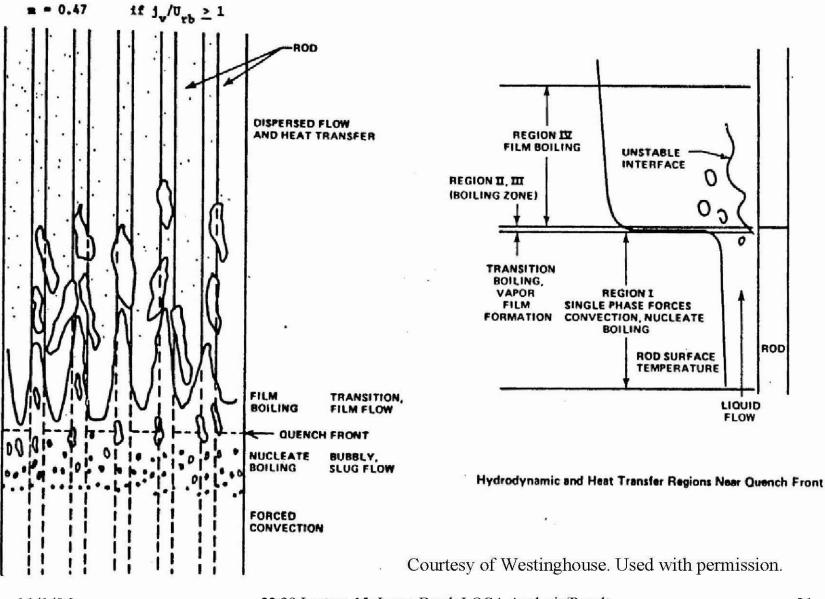
Diagram removed due to copyright restrictions. Figure 4.19 in Collier, J. G., and G. F. Hewitt. *Introduction to Nuclear Power*. Washington, DC: Hemisphere Publishing, 1987.

Schematic calculated fuel clad temperatures for a PWR LOCA


Diagram removed due to copyright restrictions. Figure 5-9 in Nero, A.V. *A Guidebook to Nuclear Reactors*. Berkeley, CA: University of California Press, 1979. ISBN: 0520034821

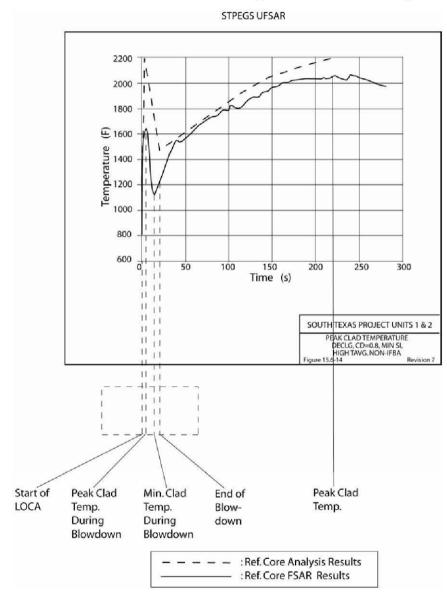
PWR Large Break LOCA Phases

Phase	Time(s)
Bypass	20-30
Refill	30-40
Reflood	40-250
Long term cooling	250-


Courtesy of Westinghouse. Used with permission.

LOCA Transient Periods

Courtesy of Westinghouse. Used with permission.


Typical Conditions in Rod Bundle During Reflood

22.39 Lecture 15: Large Break LOCA Analysis/Result

Professor Neil Todreas

South Texas FSAR Limiting Clad Temperature for LBLOCA

Source: Shuffler, C., J. Trant, N.E. Todreas, and A. Romano, *Thermal Hydraulic and Economic Analysis of Grid-Supported, Hydride-Fueled PWRs* (MIT-NFC-PR-077). Cambridge, MA: MIT CANES, January 2006

Analytic Estimate of PWR LBLOCA PCT

(Catton, I. et al, "Quantifying Reactor Safety Margines, Part 6, A Physically Based Method of Estimating PWR LBLOCA PCT," *NED* 119 (1990) 109-117)

 $T_{PCT} = T_i + Blowdown$ + Refill + Reflood - Blowdown Heating from decay decay heatup convective Decay heat & heatup and cooling cooling Stored energy = 580 + 570 $+ 134 + (70 - 350) = 840^{\circ}F$ - 164

Components $\sigma_{i05} = \pm 364 + 60 / - 82 + 16 / - 0 + 230 / -55$

 $\sigma_{95} = \left(\sum_{i}^{n} \sigma_{195}^{2}\right)^{1/2} = 435^{\circ} \text{F}/377^{\circ} \text{F}$

Mean $T_{PCT} = 840^{\circ}F$; $95^{th}T_{PCT} = 1217$ to $1275^{\circ}F$

Assumptions: $q_i^1 = 9.5$ kw/ft Reflood rate = 4 inches/sec Blowdown peak minus minimum clad temperature times = 20 sec

Source: Shuffler, C., J. Trant, N.E. Todreas, and A. Romano, *Thermal Hydraulic and Economic Analysis of Grid-*Supported, Hydride-Fueled PWRs (MIT-NFC-PR-077). Cambridge, MA: MIT CANES, January 2006

Temperature at which significant phenomena occur during core heat-up

Temperature (°C)	Significant Phenomenon		
350	Approximate cladding temperature during power operation.		
800-150	Rod internal gas pressure in the post-accident environment causes cladding to perforate or swell Some fission gases release Solid reactions begin stainless steels and Zircaloy Clad swelling may block some flow channels		
1450-1500	Zircaloy steam reaction may produce energy in excess of decay hea Gas absorption embrittles Zircaloy Hydrogen formed Steel alloy melts		
1550-1650	Zircaloy-steam reaction may be autocatalytic unless Zircaloy is quenched by immersion.		
1900	Zircaloy melts		
2150	Increasingly significant fission product release from UO ₂		
2700	UO_2 and ZrO_2 melt		

Figure by MIT OCW. After Hewitt and Collier.

Best Estimate Large Break LOCA Analysis Results

В	0 sec.	Break occurs
L		Reactor trip (pressurizer pressure or high containment pressure)
0	1	Pumped SI signal (pressurizer pressure or high containment pressure)
w		Accumulator injection begins
D	1 · ·	Pumped ECCS injection begins (offsite power available)
0		Containment heat removal system starts (offsite power available)
w	20-25 sec.	End of bypass
N		
R	4	End of blowdown
E		Pumped ECCS injection begins (loss of offsite power)
F		
1		Containment heat removal system starts (loss of offsite power)
L L	35-40 sec.	Bottom of core recovery
L	35-40 sec.	Bottom of core recovery
R	1	
E		
R E F	1.1	Accumulators empty
L	1	
0		
0	-	
D	5 min.	Core quenched
L O N G	1.01	Switch to cold leg recirculation on RWST low level alarm
т		
Ē		
R		
M		Switch to hot leg/cold leg recirculation
с	1	
õ		
0		1
O L	DEST E	STIMATE LARGE BREAK LOCA TIME SEQUENCE OF EVENTS
L	DESTE	THATE LANDS BREAK LOCA TIME SEQUENCE OF EVENTS
I	1	
N G		
G		

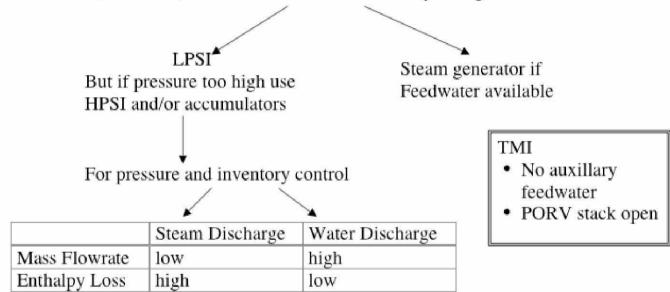
BEST ESTIMATE LARGE BREAK LOCA ANALYSIS RESULTS

Component	Blowdown Peak	First Reflood Peak	Second Reflood Peak
PCT ^{average}	<1508°F	<1681°F	<1384°F
PCT ^{95%}	<1760°F	<1976°F	<1964°F
Maximum Oxidation	÷	<11%	181
Total Oxidation		<0.89%	

Courtesy of Westinghouse. Used with permission.

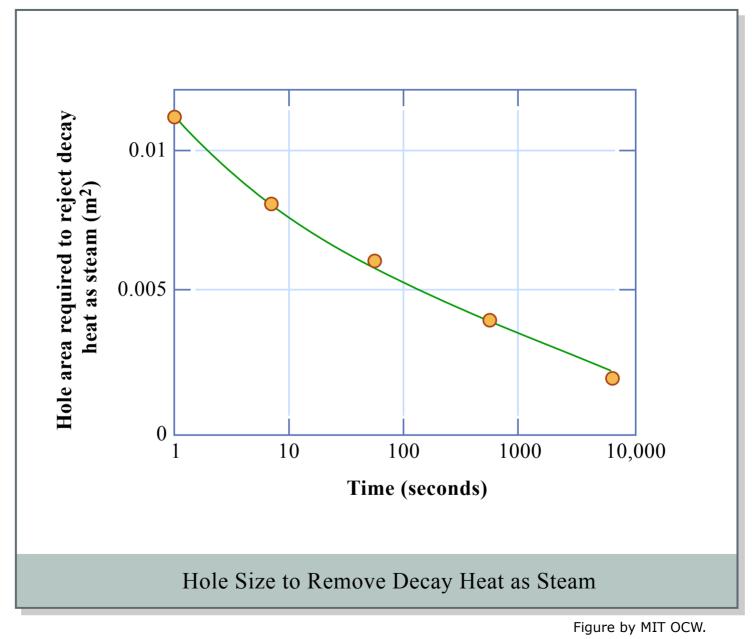
11/1/06

Research Program to Address Appendix K Conservatisms


Appendix K <u>Requirement</u>	Research Program
Decay heat	ANS Decay Heat Standard Committee ANSI/ANS-5.1-1979
Zirconium-water oxidation	ORNL - Reaction Rate Studies
ECC bypass	BCL 1/15, 2/15 Scale Tests, Creare 1/1 Scale Tests
Post CHF heat transfer	ORNL film boiling tests, semiscale tes University of Lehigh single tube tests
Reflood heat transfer	Full length emergency core heat transfor (FLECHT) low flooding rate tests, FLECHT-SEASET (separate effects and systems effects test) tests
Steam binding during reflood	FLECHT-SET phase B systems tests, semiscale, FLECHT-SEASET steam generate tests, cylindrical core test facility reflood systems tests
Flow blockage heat transfer at low reflood rates	FLECHT-SEASET 21-rod and 163-rod bundle tests, FEBA tests, NRU rod burst tests
No rewet after CHF until reflood	Semiscale, loss of fluid test (LOFT) systems tests, Westinghouse film boili tests
	Marviken full scale critical flow test

Courtesy of Westinghouse. Used with permission.

11/1/06


Small Break LOCA Strategy

1100 Mwe (3400 Mwt) $\Rightarrow \sim 200$ Mwt immediate decay heat generation

If break too small or water discharged increase break area

- PORVs top of pressurizer (0.002m²/valve)
- · Safety relief valves

PWR Small Break LOCA Phases

Phase	Time(s)	
Initial stage	0-10	
Reflux condensation	10-220	
Potential for first core uncovery	220-280	
Loop seal clearing, potential for	280-310	
core uncovery		
Long term cooling	310-	

Courtesy of Westinghouse. Used with permission.

Primary pressure vs time for small-break LOCAs in a PWR.
(O) Primary temperature 175°C; (□) reflood tank empty.
(Two HPI pumps; reflood tanks 4 x 286 m³; no LPI pumps)

Diagram removed due to copyright restrictions. Figure 4.22 in Collier, J. G., and G. F. Hewitt. *Introduction to Nuclear Power*. Washington, DC: Hemisphere Publishing, 1987.

Small-break LOCA; mixture level and clad temperatures

Diagram removed due to copyright restrictions. Figure 4.27 in Collier, J. G., and G. F. Hewitt. *Introduction to Nuclear Power*. Washington, DC: Hemisphere Publishing, 1987.

Notrump Transient Results

Event Time (sec)	2 Inch	3 Inch	4 Inch	6 Inch
Break Initiation	0	0	0	0
Reactor Trip Signal	42.5	16.2	9.41	6.07
S-Signal	56.8	28.0	20.3	13.9
SI Delivered	83.8	55.0	47.3	40.6
Loop Seal Clearing*	960	416	210	42.5
Core Uncovery	1468	700	436	181.5
Accumulator Injection	N/A	1246	609	259.9
RWST Empty Time	3910	3878	N/A	N/A
PCT Time	2822.5	1482	764.2	317.7
Core Recovery**	> 6000	> 5000	2828	382.2

* Loop seal clearing is defined as break vapor flow > 1 lb/s

** For the 2 and 3 inch cases, where core recovery is > TMAX, basis for transient termination can be concluded based on the following arguments: (1) The RCS system pressure is decreasing which will increase SI flow, (2) Total RCS system mass is increasing, (3) Core mixture level has begun to increase and is expected to continue for the remainder of the accident

Courtesy of Westinghouse. Used with permission.

Beginning of Life (BOL) Rod Heatup Results

	2 Inch	3 Inch	4 Inch	6 Inch
PCT (°F)	1276	1829	1531	/1418
PCT Time (s)	2822.5	1482.0	764.2	317.7
PCT Elevation (ft)	11.5	11.75	11.5	10.75
Burst Time (s)	N/A	N/A	N/A	N/A
Burst Elevation (ft)	N/A	N/A	N/A	N/A
Max. Local ZrO ₂ (%)	0.23	3.98	0.49	0.16
Max. Local ZrO ₂ Elev (ft)	11.5	11.75	11.5	11.0
Core-Wide Avg. ZrO ₂ (%)	0.03	0.53	0.08	0.03

Courtesy of Westinghouse. Used with permission.