Thermal Hydraulic Design Requirements in Safety Analysis: Transients & Accidents

Course 22.39, Lecture 4 9/18/06 Professor Neil Todreas

Reactor Safety Fundamentals

		Safety	Elements	
		Design	Material Condition	People
Safet y Funct ions	Nuclear (Reactivity) Excursion	RBMK		•
	Fuel Overheating	•		TMI-2
	Decay Heat Removal			

Goal: Prevent Fission Product Release to the Environment

Concepts to Insure Core Cooling

Course 22.39, Lecture 4 Professor Neil Todreas

PWR - AP600

Courtesy of Regis Matzie. Used with permission.

Concepts to Dump Heat to Ultimate Heat Sink

Schematic View of the AP-600 Reactor Concept, showing the containment building and associated cooling systems

Courtesy of Regis Matzie. Used with permission.

Heat/Mass Transfer Model

Schematic View of the IFR/ALMR Reactor Concept, showing the reactor coolant and major safety systems

Severe Accident Issues Resolved

- Core debris coolability
- Hydrogen burning
- Direct containment heating
- Core concrete interaction
- Steam explosions

Core Debris Chamber and Cavity Exit Pathway on System 80+ Design

Courtesy of Regis Matzie. Used with permission.

Containment Atmosphere Hydrogen Control in System 80+ Design

- 80 Igniters located in pathways of generated hydrogen
- Approximately half are batterybacked

Courtesy of Regis Matzie. Used with permission.

System 80+ Cavity Flooding System

Courtesy of Regis Matzie. Used with permission.

Paradigm – Altering Safety Assurance Differences*

PWR	GFR	LMR	
Coolant is high pressure (15 MPa), H ₂ O liquid; Low boiling point, Good heat transfer	Coolant is high pressure (7-20 MPa), Gas: He, CO ₂ ; Mediocre heat transfer	Coolant is low pressure (≤0.5 MPa), Liquid metal: Na, Pb; High boiling point, Excellent heat transfer	
Some fraction of cooling inventory remains after LOCA	>98% of coolant escapes in a complete depressurization	Use of guard vessel retains adequate liquid inventory in reactor vessel	
Large liquid reflood reservoir is available; Boiling and heat of vaporization facilitate cooling	Limited high pressure gas injection available; At low pressure only air available in large amount	Can design for passive decay heat removal by natural convection to ambient air or water	
Post-LOCA goal is timely reduction of containment pressure to reduce leakage Reducing pressure after shutdown does not negatively impact coolability	 Maintaining high pressure facilitates long term cooling, especially via natural convection Low pressure is always detrimental to heat transfer and transport; Cooling capability is proportional to pressure; Adequate natural convection only at several atmospheres 	System is low pressure	
Refueling under water at 1 atm can rely on an effective passive heat sink; Visual observation possible	Cooling during depressurized refueling is challenging; Refueling at high pressure creates more LOCA sequences; Visual observation possible	Refueling is at low pressure, but blind; Heat removal is assured	
Benign reactor physics characteristics; Negative coolant void reactivity (in common with most thermal reactors)	Small delayed neutron fraction and Doppler reactivity; Positive coolant void reactivity (in common with all fast reactors); Fuel compaction and recriticality	Small delayed neutron fraction; Modest Doppler reactivity; Large local positive void reactivity; Fuel compaction and recriticality	

Paper Reactors, Real Reactors

Characteristics of an Academic Plant

- It is simple.
- It is small.
- It is cheap.
- It is light.
- It can be built very quickly.
- It is very flexible in purpose.
- Very little development is required. It will use mostly off-theshelf components.
- The reactor is in the study phase. It is not being built now.

Characteristics of a Practical Reactor Plant

- It is being built now.
- It is behind schedule.
- It is requiring an immense amount of development on apparently trivial items. Corrosion, in particular, is a problem.
- It is very expensive.
- It takes a long time to build because of the engineering development problems.
- It is large.
- It is heavy.
- It is complicated.

(H.G. Rickover, The Journal of Reactor Science & Engineering, June 1953)