

Probabilistic Calculations

22.39 Elements of Reactor Design, Operations, and Safety

Lectures 10-11

Fall 2006

George E. Apostolakis Massachusetts Institute of Technology

Department of Nuclear Science and Engineering

1

General Formulation

 $X_T = \varphi(X_1, \dots, X_n) \equiv \varphi(\underline{X})$

$$X_{T} = 1 - \prod_{i=1}^{N} (1 - M_{i}) \equiv \prod_{i=1}^{N} M_{i}$$

$$X_T = \sum_{i=1}^N M_i - \sum_{i=1}^{N-1} \sum_{j=i+1}^N M_j M_j + \dots + (-1)^{N+1} \prod_{i=1}^N M_i$$

X_T : the TOP event indicator variable
M_i : the ith minimal cut set or accident sequence

TOP-event Probability

$$P(X_T) = \sum_{1}^{N} P(M_i) + \dots + (-1)^{N+1} P\left(\prod_{1}^{N} M_i\right)$$
$$P(X_T) \cong \sum_{1}^{N} P(M_i) \qquad \text{Rare-event approximation}$$

The question is how to calculate the probability of \boldsymbol{M}_{i}

$$P(M_i) = P(X_k^i \dots X_m^i)$$

$$P(A/B) \equiv \frac{P(AB)}{P(B)}$$

Conditional probability:

Independent events: P(A/B) = P(A)P(AB) = P(A)P(B)

MinCutSet Probability

$$P(M) = P(X_1X_2X_3) = P(X_1)P(X_2X_3/X_1) = P(X_1)P(X_2/X_1)P(X_2/X_1)P(X_3/X_1X_2)$$

For independent events:

$$P(M) = P(X_1X_2X_3) = P(X_1)P(X_2)P(X_3)$$

For accident sequences, we must include the initiating-event frequency per year:

 $fr(M) = fr(IEX_1X_2) = fr(IE)P(X_1X_2/IE) = fr(IE)P(X_1/IE)P(X_2/IEX_1)$

$$\operatorname{fr}(X_{T}) \equiv \operatorname{CDF} \cong \sum_{i=1}^{N} \operatorname{fr}(M_{i})$$

Example: 2-out-of-4 System

$$M_{1} = X_{1} X_{2} X_{3} \qquad M_{2} = X_{2} X_{3} X_{4}$$
$$M_{3} = X_{3} X_{4} X_{1} \qquad M_{4} = X_{1} X_{2} X_{4}$$

 $X_T = 1 - (1 - M_1) (1 - M_2) (1 - M_3) (1 - M_4)$

 $X_{T} = (X_{1} X_{2} X_{3} + X_{2} X_{3} X_{4} + X_{3} X_{4} X_{1} + X_{1} X_{2} X_{4}) - 3X_{1} X_{2} X_{3} X_{4}$

2-out-of-4 System (cont'd)

$$P(X_{T} = 1) = P(X_{1} X_{2} X_{3} + X_{2} X_{3} X_{4} + X_{3} X_{4} X_{1} + X_{1} X_{2} X_{4}) - 3P(X_{1} X_{2} X_{3} X_{4})$$

Assume that the components are independent and nominally identical with failure probability q. Then,

 $P(X_T = 1) = 4q^3 - 3q^4$

Rare-event approximation: $P(X_T = 1) \cong 4q^3$

Overview

- We need models for:
 - > The frequency of initiating events.
 - > The probability that a component will fail on demand.
 - The probability that a component will run for a period of time given a successful start.

Initiating Events: The Poisson Distribution

- Used typically to model the occurrence of initiating events.
- Discrete Random Variable: Number of events in (0, t)
- The rate λ is assumed to be constant; the events are independent.
- The probability of exactly k events in (0, t) is (pmf):

$$\Pr[k] = e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}$$

 $k! \equiv 1*2*...*(k-1)*k$ 0! = 1 $m = \lambda t$ $\sigma^2 = \lambda t$

Example of the Poisson Distribution

• A component fails due to "shocks" that occur, on the average, once every 100 hours. What is the probability of exactly one replacement in 100 hours? Of no replacement?

•
$$\lambda t = 10^{-2*}100 = 1$$

- $Pr[1 repl.] = e^{-\lambda t} = e^{-1} = 0.37 = Pr[no replacement]$
- Expected number of replacements: 1

$$\Pr[2\text{repl}] = e^{-1} \frac{1^2}{2!} = \frac{e^{-1}}{2} = 0.185$$

 $\Pr[k \le 2] = 0.37 + 0.37 + 0.185 = 0.925$

Reliability and Availability

- <u>Reliability</u>: Probability of successful operation over a period (0, t).
- Availability: Probability the item is working at time t.
- <u>Note</u>:
 - In industrial applications, the term "reliability" includes the probability that a safety system will start successfully and operate for a period (0, t).
 - > The term "unavailability" usually refers to maintenance.

Failure while running

- T: the time to failure of a component (continuous random variable).
- **F**(t) = **P**[**T** < t]: failure distribution (unreliability)
- $R(t) \equiv 1-F(t) = P[t < T]$: reliability
- m: mean time to failure (MTTF)
- f(t): failure density, f(t)dt = P{failure occurs between t and t+dt} = P [t < T < t+dt]

The Hazard Function or Failure Rate

$$h(t) \equiv \frac{f(t)}{R(t)} = \frac{f(t)}{1 - F(t)} \qquad F(t) = 1 - \exp\left(-\int_{0}^{t} h(s) ds\right).$$

The distinction between h(t) and f(t) :

f(t)dt: <u>unconditional</u> probability of failure in (t, t +dt),

f(t)dt = P[t < T < t+dt]

h(t)dt: <u>conditional</u> probability of failure in (t, t +dt) <u>given</u> that the component has survived up to t.

 $h(t)dt = P [t < T < t+dt/{t < T}]$

The Exponential Distribution

• $f(t) = \lambda e^{-\lambda t}$ $\lambda > 0$ t > 0 (failure density)

•
$$F(t) = 1 - e^{-\lambda t}$$
 $R(t) = e^{-\lambda t}$

• $h(t) = \lambda$ constant (no memory; the *only* pdf with this property) \Rightarrow useful life on bathtub curve $F(t) \cong \lambda t$ for $\lambda t < 0.1$ (*another* rare-event approximation)

$$m=\frac{1}{\lambda}=\sigma$$

Example: 2-out-of-3 system

Each sensor has a MTTF equal to 2,000 hours. What is the unreliability of the system for a period of 720 hours?

• Step 1: System Logic.

 $X_T = (X_A X_B + X_B X_C + X_C X_A) - 2X_A X_B X_C$

Example: 2-out-of-3 system (2)

Step 2: Probabilistic Analysis.

For nominally identical components: $P(X_T) = 3q^2 - 2q^3$

$$q = F(t) = 1 - e^{-\lambda t}$$
 $\lambda = 5x10^{-4}$ hr^{-1}

 $F_{\rm T}(t) = 3(1 - e^{-\lambda t})^2 - 2(1 - e^{-\lambda t})^3$ **System Unreliability:**

Rare event approximation:

$$F_{\rm T}(t) \cong 3(\lambda t)^2 - 2(\lambda t)^3$$

A note on the calculation of the MTTF

$$MTTF = \int_{0}^{\infty} R(t)dt$$

Proof

$$MTTF = \int_{0}^{\infty} tf(t)dt = \int_{0}^{\infty} t(-\frac{dR}{dt})dt = -\int_{0}^{\infty} tdR =$$
$$= -tR_{0}^{\infty} + \int_{0}^{\infty} R(t)dt = \int_{0}^{\infty} R(t)dt$$

A note on the calculation of the MTTF (cont.)

since

$f(t) = \frac{dF}{dt} = \frac{d(1-R)}{dt} = -\frac{dR}{dt}$

and

$R(t \rightarrow \infty) \rightarrow 0$ faster than $t \rightarrow \infty$

MTTF Examples $\mathbf{MTTF} = \int_{0}^{\infty} e^{-\lambda t} dt = \frac{1}{\lambda}$ Single exponential component: $MTTF = \int_{0}^{\infty} dt e^{-m\lambda t} = \frac{1}{m\lambda} \equiv \frac{1}{\lambda_{system}}$ Series system: $MTTF = \int_{0}^{\infty} dt \left(2e^{-\lambda t} - e^{-2\lambda t} \right) = \frac{3}{2\lambda}$ 1-out-of-2 system : 2-out-of-3 system : \sim \sim

$$MTTF = \int_{0}^{\infty} R_{T}(t) dt = \int_{0}^{\infty} [1 - 3(1 - e^{-\lambda t})^{2} + 2(1 - e^{-\lambda t})^{3}] dt = \frac{5}{6\lambda}$$

Department of Nuclear Science and Engineering

19

MTTF Examples: 2-out-of-3 System

Using the result for $F_T(t)$ on slide 15, we get

$$MTTF = \int_{0}^{\infty} R_{T}(t)dt = \int_{0}^{\infty} [1 - 3(1 - e^{-\lambda t})^{2} + 2(1 - e^{-\lambda t})^{3}]dt$$
$$MTTF = \frac{1}{2\lambda} + \frac{1}{3\lambda} = \frac{5}{6\lambda}$$
The MTTF for a single exponential component is: $\frac{1}{\lambda}$
 \Rightarrow The 2-out-of-3 system is slightly worse.

The Weibull failure model

Adjusting the value of b, we can model any part of the bathtub curve.

 $\mathbf{h}(\mathbf{t}) = \mathbf{b}\lambda^{\mathbf{b}}\mathbf{t}^{\mathbf{b}-1}$

 $\mathbf{R}(t) = e^{-(\lambda t)^{b}}$

For $b = 1 \Rightarrow$ the exponential distribution.

The Model of the World

> Deterministic, e.g., a mechanistic computer code

> Probabilistic (Aleatory), e.g., $R(t/\lambda) = exp(-\lambda t)$

Both deterministic and aleatory models of the world have assumptions and parameters.

How confident are we about the validity of these assumptions and the numerical values of the parameters?

The Epistemic (state-of-knowledge) Model

- Uncertainties in assumptions are not handled routinely. If necessary, sensitivity studies are performed.
- Parameter uncertainties are reflected on appropriate probability distributions.
- For the failure rate: π(λ) dλ = Pr(the failure rate has a value in dλ about λ)

Communication of Epistemic Uncertainties: The discrete case

Suppose that $P(\lambda = 10^{-2}) = 0.4$ and $P(\lambda = 10^{-3}) = 0.6$

Then, $P(e^{-0.001t}) = 0.6$ and $P(e^{-0.01t}) = 0.4$

 $R(t) = 0.6 e^{-0.001t} + 0.4 e^{-0.001t}$

Communication of Epistemic Uncertainties: The continuous case

Courtesy of US NRC.

The lognormal distribution

• It is very common to use the lognormal distribution as the epistemic distribution of failure rates.

$$\pi(\lambda) = \frac{1}{\sqrt{2\pi\sigma\lambda}} \exp\left[-\frac{(\ln\lambda - \mu)^2}{2\sigma^2}\right] \qquad m = \exp\left[\mu + \frac{\sigma^2}{2}\right]$$

$$\lambda_{95} = e^{\mu + 1.645\sigma}$$
 median : $\lambda_{50} = e^{\mu}$

$$\lambda_{05} = e^{\mu - 1.645\sigma}$$

$$\mathbf{EF} = \frac{\lambda_{95}}{\lambda_{50}} = \frac{\lambda_{50}}{\lambda_{05}} = \sqrt{\frac{\lambda_{95}}{\lambda_{05}}}$$

 $Y = ln \lambda \qquad \begin{array}{l} Y \text{ is normally distributed with mean } \mu \text{ and standard} \\ \text{deviation } \sigma \end{array}$

Component/Primary	Assessed	Assessed Values		
Failure Modes	Lower Bound	Upper Bound		
	Mechanical Har	dware		
Pumps				
Failure to start, Q_:	$3 \times 10^{-4}/d$	$3 \times 10^{-3}/d$		
Failure to run, λ_{a} :	$3 \times 10^{-6}/hr$	$3 \times 10^{-4}/hr$		
(Normal Environments)				
Valves				
Motor Operated				
Failure to operate, Q _d :	$3 \times 10^{-4}/d$	3 x 10 ⁻³ /d		
Plug, Q _d :	$3 \times 10^{-5}/d$	3 x 10 ⁻⁴ /d		
Solenoid Operated				
Failure to operate. O.:	3×10^{-4} /d	3×10^{-3}		
Plug, Q.:	$3 \times 10^{-5}/d$	3×10^{-4}		
a				
Air Operated				
Failure to operate, Qd:	$1 \times 10^{-4}/d$	$1 \times 10^{-3}/d$		
Plug, Q _d :	$3 \times 10^{-3}/d$	3 x 10 ⁻⁴ /d		
Check				
Failure to open, Q _d :	$3 \times 10^{-5}/d$	$3 \times 10^{-4}/d$		
Relief				
Failure to open, Q ₄ :	$3 \times 10^{-6}/d$	$3 \times 10^{-5}/d$		
Manual		•		
Plug. O.:	3 × 10-5/4	3 - 10-4 /4		
	J X 10 /4			
Pipe				
Flug/rupture	7 10-11			
- J diameter, A	3×10^{-12} hr	3 x 10 /hr		
- J Glameter, A	J X 10 /hr	3 x 10 /hr		
Clutches				
Mechanical		•		
Failure to engage/	1 × 10-4 /4	1 ~ 10-3/2		
7	1 × 10 /0	T X TO /d		
	Electrical Hardware			
Slectrical Clutches	-			
		10222		

Шij

.

Courtesy of US NRC.

28

(Continued)

	Component/Primary	Assessed	Assessed Values	
	Failure Modes	Lower Bound	Upper Bound	· · ·
	Motors			-
	Failure to start, Q _d : Failure to run	1×10^{-4} /d	$1 \times 10^{-3}/d$	
	(Normal Environments), ^{\lambda_0:}	$3 \times 10^{-6}/hr$	$3 \times 10^{-5}/hr$	
	Transformers			
	Open/shorts, ¹ o:	$3 \times 10^{-7}/hr$	$3 \times 10^{-6}/hr$	2
	Relays			
	Failure to energize, Q _d :	$3 \times 10^{-5}/d$	3 x 10 ⁻⁴ /d	
	Circuit Breaker	4	-1	
	Failure to transfer, Qd:	3 x 10 7d	3 x 10 -/d	
	Limit Switches Failure to operate, Q _d :	1×10^{-4} /d	$1 \times 10^{-3}/d$	*
	Torque Switches		2	
	Failure to operate, Qd:	3 x 10 ⁻⁵ /d	$3 \times 10^{-4}/d$	
	Pressure Switches			
	Failure to operate, Q _d :	$3 \times 10^{-5}/d$	$3 \times 10^{-4}/d$	
	Manual Switches		1965 -	
	Failure to operate, Qd:	3 × 10 ⁻⁶ /d	3 × 10 ⁻⁵ /d	
	Battery Power Supplies			
	Failure to provide proper output, λ_s :	$1 \times 10^{-6}/hr$	1 x 10 ⁻⁵ /hr	
	Solid State Devices		24	
	Fails to function, λ_0 :	$3 \times 10^{-7}/hr$	$3 \times 10^{-5}/hr$	Ì
	Diesels (complete plant)		· ·	
	Failure to start, Qd:	$1 \times 10^{-2}/d$	$1 \times 10^{-1}/d$	
	Failure to run, λ_0 :	$3 \times 10^{-4}/hr$	$3 \times 10^{-2}/hr$	
	Instrumentation			Courtes
	Failure to operate λ_0 :	$1 \times 10^{-7}/hr$	$1 \times 10^{-5}/hr$	
(a)	All values are rounded to the	nearest half	order of magnitud	e on the exponent.
(b)	Derived from averaged data or	n pumps, combin	ing standby and o	perate time.
(c)	Approximated from plugging th	hat was detecte	d.	

(d) Derived from combined standby and operate data.

(e) Derived from standby test on batteries, which does not include load.

Department of Nuclear Science and Engineering 29

Courtesy of US NRC.

SIMPLIFIED SYSTEM DIAGRAM

Department of Nuclear Science and Engineering

30

HIGH PRESSURE INJECTION DURING LOOP 1-0F-3 TRAINS FOR SUCCESS

HPIS Analysis (1-out-of-3)

- In the RSS HPIS, the three pump trains have a common suction line from the RWST. The South Texas Project design has separate suction lines for the three trains, as the fault tree shows.
- $Q_{total} = Q_{singles} + Q_{doubleFail's} + Q_{test\&maint} + Q_{CCF}$
- <u>Representative single failures (single-element mcs)</u>:
 - Check valve SI 225 fails to open
 - Check valve SI-25 fails to open
 - > **RWST discharge line ruptures**
 - > Other
- $Q_{singles} = 1.1 \times 10^{-3}$ ("point estimate")

HPIS: Double Failures

- <u>Representative double failures (double-element mcs)</u>:
 - **RWST supply MOVs 1115B and 1115D fail to open**
 - Born Injection Tank (BIT) inlet MOVs 1867A and 1867B fail to open
 - **BIT discharge MOVs 1867C and 1867D fail to open**
 - Service water pumps; cooling water pumps; BIT cooling system
 - > other
- Q(MOVs 1867C and 1867D fail to open) = $P(X_1) P(X_2)$ where $P(X_i)$ is a lognormal with median 1.9x10⁻² and EF = 3

HPIS: Other Contributions

- Q_{test&maint} is negligible because of the 1-out-of-3 redundancy (if one train is out, double failures must occur for the system to fail).
- $Q_{CCF}(MOVs \ 1867C \ and \ 1867D \ fail \ to \ open) = \beta P(X_1) = 0.075x1.9x10^{-2} = 1.4x10^{-3}$
- Monte Carlo simulation yields (RSS):
 - $P_{\text{total,median}} = 8.6 \times 10^{-3}$ $P_{\text{total,upper}} = 2.7 \times 10^{-2}$ $P_{\text{total,lower}} = 4.4 \times 10^{-3}$

Fussell-Vesely Importance Measure

$$\mathbf{FV_i} = \frac{\mathbf{Pr}[\bigcup_{k} \mathbf{M}_{k}^{(i)}]}{\mathbf{R}^{0}} = \frac{\mathbf{R}^{0} - \mathbf{R}^{-i}}{\mathbf{R}^{0}} = 1 - \frac{\mathbf{R}^{-i}}{\mathbf{R}^{0}}$$

R⁰ The base-case risk metric (CDF or LERF) = $\Pr[\bigcup_{k} \mathbf{M}_{k}]$

 $\mathbf{M}_{\mathbf{k}}^{(i)}$ The kth accident sequence containing event i

R⁻ⁱ The risk metric (CDF or LERF) with the ith component up (unavailability equal to zero)

Risk Reduction Worth (RRW)

$$\mathbf{RRW}_{i} = \frac{\mathbf{R}^{0}}{\mathbf{R}^{-i}}$$
$$\mathbf{FV}_{i} = \frac{\mathbf{R}^{0} - \mathbf{R}^{-i}}{\mathbf{R}^{0}} = 1 - \frac{\mathbf{R}^{-i}}{\mathbf{R}^{0}} = 1 - \frac{1}{\mathbf{RRW}_{i}}$$

 \bullet FV_i is the fractional decrease in the risk metric when event i is always true (component i is always available; its unavailability is set equal to zero).

•This importance measure is particularly useful for identifying improvements to the reliability of elements which can most reduce risk.

F-V Ranking

Loss Of Offsite Power Initiating Event	0.831
DIESEL GENERATOR B FAILS	0.437
DIESEL GENERATOR A FAILS	0.393
COMMON CAUSE FAILURE OF DIESEL GENERATORS	0.39
OPERATOR FAILS TO RECOVER OFFSITE POWER (SEAL LOCA)	0.388
RCP SEALS FAIL W/O COOLING AND INJECTION	0.344
OPERATOR FAILS TO RECOVER OFFSITE POWER	
BEFORE BATTERY DEPLETION	0.306

lli i

Risk Achievement Worth (RAW)

$$\mathbf{RAW}_{i} = \frac{\mathbf{R}^{+i}}{\mathbf{R}^{0}}$$

R⁺ⁱ The risk metric (CDF or LERF) with the ith component always down (its unavailability is set equal to 1)

RAW presents a measure of the "worth" of the basic event in "achieving" the present level of risk and indicates the importance of maintaining the current level of reliability for the basic event.

RAW Ranking

Шï

Loss Of Offsite Power Initiating Event	51,940
Steam Generator Tube Rupture Initiating Event	41,200
Small Loss Of Coolant Accident Initiating Event	40,300
CONTROL ROD ASSEMBLIES FAIL TO INSERT	3,050
COMMON CAUSE FAILURE OF DIESEL GENERATORS	271
RPS BREAKERS FAIL TO OPEN	202

Comments on Importance Measures

- Importance measures are typically evaluated for individual SSCs, not groups.
- The various categories of risk significance are determined by defining threshold values for the importance measures. For example, in some applications, a SSC is in the "high" risk-significant category when $FV \ge 0.005$ and $RAW \ge 2.0$.
- Importance measures are strongly affected by the scope and quality of the PRA. For example, incomplete assessments of risk contributions from low-power and shutdown operations, fires, and human performance will distort the importance measures.