Design Goals and Interrelationship among Core Design Parameters

Course 22.39, Lecture 2 9/11/06 Professor Neil Todreas

Design Goals Professor Neil Todreas

Major Design Choices					
	PWR	GFR			
Coolant	Water	He or SCO ₂			
Neutron Spectrum Fuel	Thermal	Fast			
Fuel	UO2	Dispersion in Matrix CERCER (U-TRU) C/SiC			
Decay Heat Removal System	 Active (Gen II) Passive (AP1000 and ESBWR) 	Active or Passive			
Power Conversion Cycle	Rankine	Brayton with Supercritical CO ₂ Or Helium			
9/11/06 Pro	Design Goals ofessor Neil Todreas	2			

Principle PWR Design Challenges

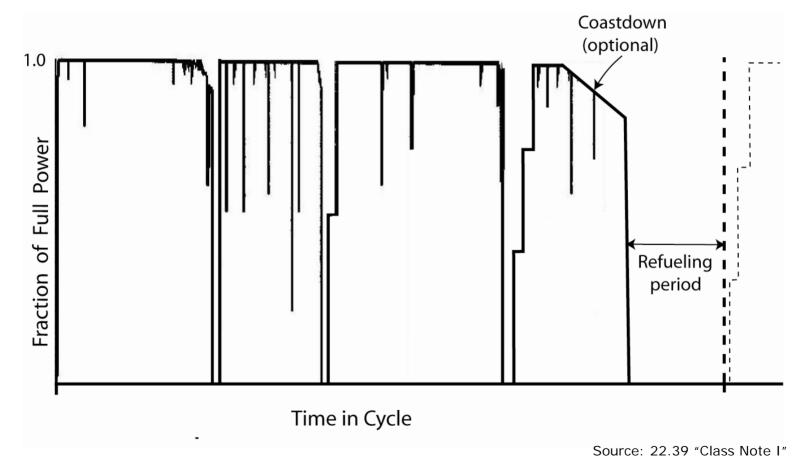
#1 Reduction of Capital Cost

Design Approaches:

- Constructability
 - ➤ Modularity, Informatics, Construction Techniques
- Design Approach
 - ≻ Safety by Natural Phenomena
 - ➢ Unique Approaches
 - Filtered, Vented Containment
 - Containment in Cooling Tower
 - Steam Generators outside Containment
 - Rapid Refueling Technology

#2 Reduction in O&M Cost

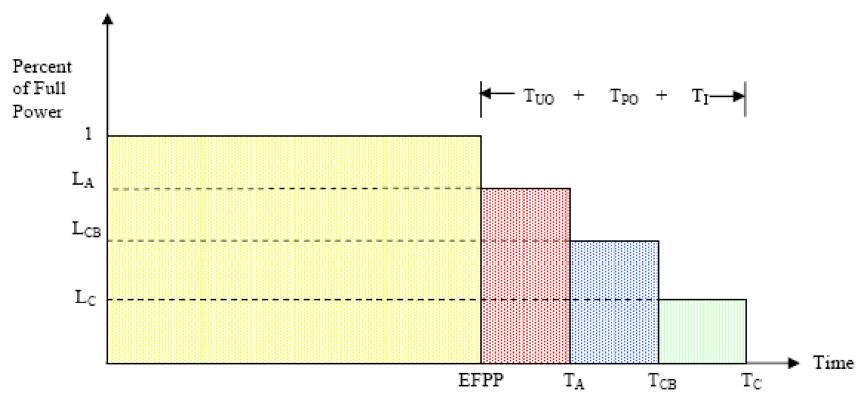
Design and Management Objectives:


- Reduce Operator Burden
- Reduce Plant Operating Staff

#3 Reduce Spent Fuel Inventory (holding fuel cycle cost level)

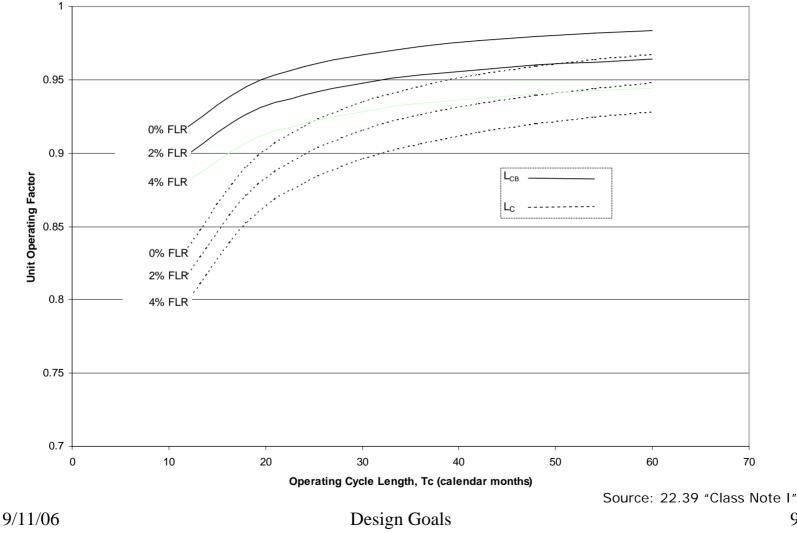
Design Approaches

- Increase Fuel Burnup
- Increase Plant Thermal Efficiency
- Separation of Actinides
- Reprocessing of Actinides

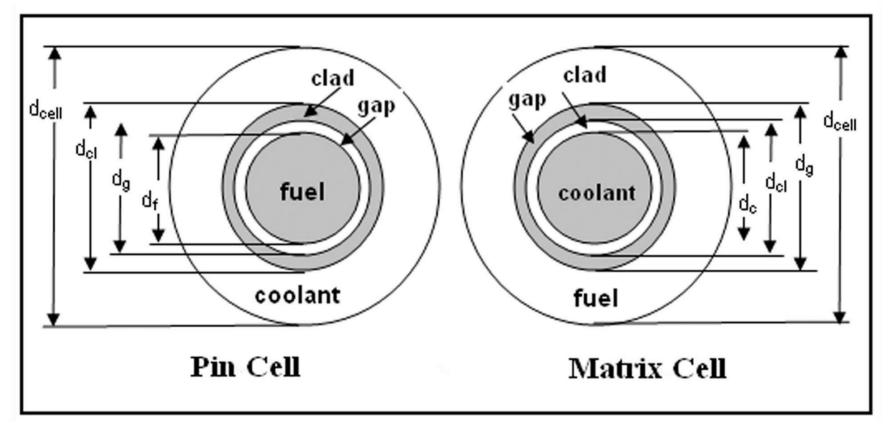

Typical Nuclear Plant Operating History

Time Periods in an Operating Cycle

Operation	Ο	Outages outside Operator Control			
At Power	Unplanned Or T _U		Planned Outages (PO) T _{PO}		Idle Outages (I)
Effective Full Power Period, EFPP	Outage Extension (EO) T _{EO}	Forced Outage (FO) T _{FO}	Refueling Outage (RO) T _{RO}	Maintenance Outage (MO) T _{MO}	Tı


Plant Operating Characteristics

Source: 22.39 "Class Note I"


Design Goals Professor Neil Todreas

Effect of Cycle Length on Plant Operating Factors (assuming a 30 day refueling outage length, T_{RO}) and 30 Day Idle Time Period, T_{I} , outside the Plant Operator's Control

Professor Neil Todreas

Equivalent Annulus Representation of the pin cell geometry and the inverted or matrix cell geometry

Source: 22.39 "Class Note I"