
22.51 Quantum Theory of Radiation Interactions 

Problem set # 3 

Issued on Wednesday Oct 10,  Due on Monday Oct. 22,  

Problem 1: Trace of tensor products 

Take a tensor product space H = A⊗B of dimensions m ⊗ n and consider two operators A ∈ A and B ∈ B.  
Show that:  

a) Tr {A ⊗ B} = Tr {A} Tr {B}  

b) Tr {A ⊗ 1B } + Tr {1A ⊗ B} = nTr {A} + mTr {B}  

Problem 2: A Nobel Prize experiment 

Consider the paper by Serge Haroche’s group describing an experiment that follows the quantum life of a 
photon, Nature 446, 297-300 (2007) 
Fig. 1 of the paper describes the experimental apparatus, that 
consists of a first Ramsey cavity R1, a cavity C, a second Ram
sey cavity R2 and the detector D. The atoms can be in two 
possible states |g) or |e) (the ground and excited states). 
The Box B prepares a flux of atoms in their ground state. We 
will consider the evolution of a single atom from that initial 
state. 

a) The Ramsey cavity R1 operates on the atoms with the Hamiltonian 

HR1 = iΩR(|e) (g| − |g) (e|) 

The atoms take a time tR = π/(ΩR4) to traverse the Ramsey cavity (during which time they experience the 
Hamiltonian above). In the cavity C, the atom interacts for a time tC with the electro-magnetic field, with 
an Hamiltonian 

HC = nω(|g) (g| − |e) (e|) 

where n is the number of photons in the cavity itself (either 0 or 1). Finally, the second Ramsey cavity R2 
has an Hamiltonian that is similar to R1: 

HR2 = −iΩR(|e) (g| − |g) (e|) 

and it takes the same time tR = π/(ΩR4) for the atom to traverse this Ramsey cavity.  
What is the atom’s state after the first Ramsey cavity?  
What is the probability of finding the atom in the state |g) at the detector D?  
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b) Now consider the e.m. field in the cavity C as a quantum mechanical system. Under the experiment 
conditions, the field is such that there’s at most one photon in the cavity (that is, either 0 or 1 photons). 
With HA the atom and He.m. the photon Hilbert space, what is a basis for the Hilbert space H = HA ⊗He.m.? 
What is the Hamiltonian HC for the interaction of the atom with the photon in the cavity? 

c) Assume that initially we do not know how many photons are in the cavity, but only that it is more 
probable to have zero photons (with 75% of probability). The atom is in the state you found in question (a). 
What is the state of the atom-photon system at the instant in which the atom enters the cavity C? 

d) The atom stays in the cavity for a time t = π/(2ω). We then detect the atom (at the detector D after 
passing in the Ramsey cavity R2) and find that it’s in the state |e). What does this tell us about the number 
of photons in the cavity? 
[Hint: You might be able to give an answer even without doing any calculations.]  
This is the method used in the paper to indirectly measure the photon number (either 0 or 1) by looking at  
the state of the atom. Even if we do not know a priori the number of photons in the cavity, we can infer it  
from the measurement of the atom’s state.  

e) If we now assume the field is initially in a superposition state √1 (|0) +   |1)) (and the atom still in the
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ground state |g) before the first Ramsey cavity), is the final state entangled?  
What would be the correlation between measuring the atom in the excited (ground) state and measuring  
one (zero) photons?  

Problem 3: Tripartite entanglement 
 

Consider the GHZ and W states of three spin− 1 . The GHZ state is defined as  |GHZ 111 ) = (  2

√
|000)+ | ))/ 2

while the W state is: |W ) = (|100) + |010) + |001))/
√
 3. These are representatives of two independent classes 

of entangled state for tripartite systems (that is, any tripartite entangled state can be rotated into either a 
GHZ or W states by local operations on the single qubits, but we cannot go from one GHZ state to a W 
state with local operations). 

a) What is the final state of the two remaining spins if you loose (trace over) one spin ? 

b) What is the purity and entanglement of the reduced states? 

Problem 4: Electron and Nuclear Spins: Magnetization 

Consider an electron with spin-1 , placed in a large Bmagnetic field B = BzBz at zero temperature. The spin2 
is in the state 

|ψ) = c0|↑) + c1|↓) 
� �where |↑) ≡ Sz = + (|↓) ≡ Sz = − ) represents the spin state aligned (anti-aligned) with the z-axis. 2 2

a) If the the

  
 spin is in

 
 its ground

  
 state,

 
 what are c0 and c1? What is the average magnetization (µz )? 

[Assume that the only interaction is the Zeeman interaction, HZ = (γBz σz/2] 

b) Now assume that we cannot achieve zero temperature, but only the liquid Nitrogen temperature T = 77K, 
so  Bthat the spin is at thermal equilibrium in the field B = BzBz. What is the state of the spin? 

c) What is the average magnetization? How many spins would you need in order to achieve the same 
magnetization as in question (a) if the magnetic field is Bz ≈ 6T? 

d) Consider now nuclear spins in a molecule. Each molecule has two spins 1/2 that interact via an 
Hamiltonian H = Jσ1σ2

z z /4, while we can neglect the interaction among spins of different molecules. The
molecules are at room temperature in a large magnetic field Bz. What is the equilibrium density operator 
and polarization in the high temperature limit? 
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Problem 5: Measurement and Decoherence 

We are interested in describing the quantum behavior of a particle –such as an atom or a ion– which is 
confined in a double well potential. The particle can be in either the left or right well. It has energy 
ER = E0 − ΔE in the right well and energy EL = E0 + ΔE in the left well. The barrier between the two 
wells is not very high, so the particle can tunnel between the two wells at a rate Γ. We neglect all degrees 
of freedom and characteristics of the particle, except for its position (either left or right). You can set for 
simplicity E0 = 0 and ( = 1. 

2ΔE
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L R

Γ

L R

I

Figure 1: Left: Double well system. Right: Double well with ΔE = 0 and photons going through the left 
well. 

a) What is the Hamiltonian describing the tunneling, HT ? What is the total Hamiltonian – describing the 
tunneling and the energy of the particle in the two wells? 

b) To measure if the particle is in the left well, we send in a photon. The photon, initially in the ground 
state |0), interacts with the particle (only if the particle is in the left well) and is promoted to the state |1). 
(If the photon had been in the state |1) the scattering would have demoted it to the state |0)). What is the 
unitary operator U describing the combined transformation of the particle and photon? Is measuring the 
state of the photon after this interaction a good way of measuring the particle’s position? 

 
c) Assume the particle is initially in the state |ψ) = (

√
|R) + |L))/ 2. If the photon (initially in the ground 

state |0)) interacts with the particle, is the combined state of the photon and particle entangled? (assume 
the photon-particle interaction happens instantaneously). 

d) Now assume that the photon detector we used in (a-b) is faulty: it absorbs the photon but does not 
record the state of the photon. What is the reduced state of the particle  after the measurement? (here again, 
assume that the particle was in the state 

√
|ψ) = (|R) + |L))/ 2 before the interaction with the photon). 

e) As our photon detector is faulty, we decide not to measure the particle. Unfortunately, we cannot 
completely block the photons from entering the left well: there is still a flux of photons with intensity I. 
Each photon, initially in the ground state |0) interacts with the particle (only if the particle is in the left 
well) and with a probability p = Iδt is scattered by the particle and is promoted to the state |1). As we 
cannot measure the state of the photons, we are interested in the evolution of the particle only. Describe the 
particle’s evolution (due to the interaction with the photon only, neglect the particle Hamiltonian) in terms 
of a Kraus operator sum.  

ρ
f) If the initial state of the particle is given by ρ = LL ρLR 

0 ρRL ρRR

interaction with n photons? (Assume that photons interact one at

 
, what is the particle’s state ρn after the 

 a time). 

g) In the limit δt → 0, write ρn as a function of the time t = nδt (remember p = Iδt). 
 

h) Assume ρ0 is given by the state 
√

|ψ) = (|R) + |L))/ 2. What is the state of the particle for t → ∞? How 
does it compare to what you found ind? Comment. 
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