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Problem 1: Neutron Interferometry 
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Figure 1: Neutron Interferometer 

Consider a neutron interferometer (NI), such as the Mach-Zehnder interferometer in the figure. We send in a beam of 

neutrons. We assume that the flux of neutrons is so low (neutrons can be very slow) so that only one neutron is present 

at any time inside the interferometer. The first beamsplitter divides the neutron flux into two parts, that will go into 

the upper arm or the lower arm. The lower and upper beams are then reflected at the mirrors and recombined at the 

second beam splitter, after which the neutron flux is measured at one arm. We assume that both beamsplitter works in 

the same way, delivering an equal flux to each arm (that is, the transmission and reflection are the same). 

a) Define the (minimal) Hilbert space describing this problem (e.g. give the basis spanning the space) 

b) What is the propagator describing the action of the Beamsplitter? 

c) What is the state at the position 1, assuming the neutron was initially traveling upward before entering the NI? 

d) What is the probability of observing a neutron in the upper arm detector? 

e) We now introduce an object in the lower path. This modifies the momentum of the neutron, and its effect is seen 

as an added phase to the neutrons passing through the lower path. Write the operator describing this phase shift and 

calculate again the probability of measuring a neutron at the upper path detector. 

f) The usual signal for interferometers is the contrast C = |(SU − SL)/(SU + SL)|, where SU (SL) is the signal (# of 

neutrons) at the upper(lower) detector. Indeed, this is always necessary since we need to calibrate and normalized the 

signal. What is the contrast for the neutron interferometer if the added phase (see previous question) is ϕ = π/2? 

Bonus: what is the operator describing the observable measured by the contrast? 

Problem 2: Pure vs. Mixed States 

Consider again the NI of Problem 1:. We previously assumed that the beam of neutrons all had the same (upward) 

momentum |ψ(0)) = |U). However, if the neutrons arrive from a reactor, we might not be able to control their initial 

state. 

b) Assume the neutrons can be represented by a mixed-state, with 50-50 probability of having initially an upward |U) 
or downward |L) momentum. What is the operator describing this state? 

c) For the initial state described above, what is the measured contrast for the same condition as in Problem 1:.f? 

Compare this result to the answer you found previously: is it possible to distinguish the two initial states from this 
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measurement? If not, propose another measurement that would distinguish the two cases. 

e) Consider a more abstract question: For the family of pure states represented by |ϑ) = (|+) + eiϑ |−))/ 
√ 
2 , and 

the non-pure state ρ = 1

2
(|+) (+| + |−) (−|) we have (σx) = 0. Thus a measurement of σx cannot distinguish the 

two states. How would you differentia√te one state from another (with an appropriate measurement)? [On notations: 

we define the states |±) = (|0) ± |1))/ 2, where |0), |1) are as usual the eigenstates of the σz operator.] 

Problem 3: Mixed state on the Bloch sphere 

  a)  The purity of a state ρ is defined as Tr 
{

ρ2
}

. Show that Tr ρ2 ≤ 1, with the equality only if ρ is a pure state. 

b) How does this condition translate to the Bloch vector nn of 

{

a tw

}

o-state system? (recall that a TLS density state can 
 always be expressed as ρ = 1

2
(11 + nn  · nσ).)
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c) What are the Bloch vectors for |1)(1|, |−) (−|, ρ =

 

5 √ 2

3

 

and |ψ)(ψ| (where
3 3

|ψ =− |1) + 
iπ/  ) (

e
2 5 

|+))/
�

2 + 
√ 
2)? What is (σy) in in each case ? 

Problem 4: Operators on composite systems 

Write the operator matrix representations for the operator σA = σA ⊗1 A B
y y B and σx ⊗σz , where each operator is defined

on the respective Hilbert space HA and HB (each spanned by the identity plus the Pauli matrices) and the operators 

you are looking for are defined on the tensor product space HA ⊗HB . 

Problem 5: Creation of entanglement 

cos(ϑ/2) e−iϕ sin(ϑ/2) 
a) Consider the unitary operator U(ϑ, ϕ) =

the following states is entangled and which o

 

ne

−e iϕ sin(ϑ/2) cos(ϑ/2) 
is separable?

 

in the usual basis |0 ), |1 ). Which of

1. [U(ϑ1, ϕ1)⊗ U(ϑ1, ϕ1)] |00) 

2. [U(ϑ1, ϕ1)⊗ U(ϑ2, ϕ2)](
√ 

|00)+ |01))/ 2
 

3. [U(ϑ1, ϕ1)
√
 

⊗ U(ϑ2, ϕ2)](|00) − |11))/ 2 

[Notice that you should be able to give an answer even without making any calculation!] 

b) Consider the Hamiltonian H = aσxσx + (1 − a)σyσy . 

1. Are its eigenstates entangled? (you can use your favorite math program to diagonalize the matrix). 

2. Consider the initial state |00). What is the rate of creation of entanglement by the Hamiltonian above? [Take 

for example as an entanglement measure the purity of the reduced state. Give an analytical expression and then 

you calculate the rate using your favorite program (it can also be done by hand)] 

Problem 6: Evolution of 2 TLS 

 a) For the two qubit state |ψ(0)) = √1
2
(|0)+ |1)) 0 , calculate the final state ψ(t) evolving under the Hamiltonian  

H = ωσ1 2

⊗| ) | )
σ  

z z . Is the state ever entangled?

b) Consider the state |ψ(t)) that you found above. What is the time evolution of its concurrence? What is the purity 

of the reduced density operator at each instant in time? 

c) What if the Hamiltonian is instead H = ωσ1 2

zσy? (give again the time evolution of the system and whether entan­

glement is created, by calculating one entanglement measure.) 
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Problem 7: Spin-1 precession 

Consider the spin-precession problem for a spin-1 system. Denote by |−1) , |0), |+1) the states with spin angular 

momentum along z {−1, 0, +1} respectively (in units of �). The Hamiltonian for a spin 1-system subjected to an 

external magnetic field B (setting � = 1) is 

H = S · γB +ΔS2 
z 

where γ is the gyromagnetic ratio and Δ is the so-called zero-field splitting or it could be a quadrupolar interaction 

term. Take B to be static, and we set it along the z-axis direction. 

a) Using the Hadamard formula 

1 
3xA 1 

2 e Be−xA = B + [A, B]x + [A, [A, B]]x + [A, [A, [A, B]]]x + . . . 
2! 3! 

iSz ϕS −iSz iS2 ϕ −iS
z 
2 ϕ 

zevaluate e xe
ϕ and e Sxe . 

b) Using the Heisenberg picture, find (Sx,y,x) as a function of time assuming the spin was initially in the state |ψ) = √
(|0)+ |+1))/ 2. 

Problem 8: Rabi oscillation for Spin 1

Consider the problem of a spin system in the presence of a sinusoidal oscillating time-dependent potential: in class 

we have used the interaction picture to solve this problem for a TLS. [This is just a reminder] Consider then a more 

general problem in which we add a (small) time-dependent magnetic field along the transverse direction (e.g. x-axis): 

Bn (t) = Bz ẑ + 2B1 cos(ωt)x̂ = Bz ẑ +B1 [(cos(ωt)x̂+ sin(ωt)ŷ) + (cos(ωt)x̂− sin(ωt)ŷ)] , 

where B1 is the strength of the radio-frequency (for nuclei) or microwave (for electron) field. 
′ The Hamiltonian of the system H = H0 + H1(t) +H
1
(t) is then: 

ω0 ω1 ω1H = σz + [cos(ωt)σx + sin(ωt)σy ] + [cos(ωt)σx − sin(ωt)σy] ,
2 2 2 

where we defined the rf frequencyω1. We already know the eigenstates of H0 (|0) and |1)). Thus we use the interaction 
− ωσzpicture to simplify the Hamiltonian, with U0 = e i /2 defining a frame rotating about the z-axis at a frequency ω: 

†
this is the so-called rotating frame. Remembering that U0σzU = cos(ωt)σx + sin(ωt)σy , it’s easy to see that the 

0 
† ω1 ′ † ′ perturbation Hamiltonian in the interaction frame is H1I = U
0 H1U0 = 

2 σx. We also have H = U
0 H1

U0 = 
1I 

ω1 (cos(2ωt)σx − sin(2ωt)σy). Under the assumptions that ω1 ≪ ω, this is a small, fast oscillating term, that quickly 
2 

averages out during the evolution of the system and thus can be neglected. This approximation is called the rotating 
wave approximation (RWA). Under the RWA, the Hamiltonian in the rotating frame simplifies to 

Δω ω1HI = σz + σx
2 2 

where Δω = ω0 − ω. Now we want to solve the same problem for a spin-1 system. The Hamiltonian of the system 

H = H0 + V (t) is : 

H = ΔS2 + ω0Sz + 2ω1 cos(ωt)Sx,z 

−iωtS 2 
za) Set ω0 = 0. Using the result in Problem 7:, make a transformation to the rotating frame U0 = e (consider 

the on resonance case for simplicity) and neglect any remaining time-dependent terms (rotating wave approximation). 

3 



 Hint: you can express the oscillating field as a sum of ”counter-rotating” fields U
0

†SxU
0 and U0SxU0

†
 , of which you 

calculate in Problem 7: the explicit expression (although these do not describe real counter-rotating fields as in the 

spin-1/2 case, but are more of a mathematical trick here). 

d) Assuming the spin is initially in the state |0), what are the probability of being in the state |0) and |±1) as a function 

of time? What is the probability of being in the state ( +1 + 1 )/ 
√

| ) |− ) 2? What about the state ( +
√ 

| 1 ) − |−1))/ 2? 

e) Now we set ω0 = 0 and we would like to only populate the states |0) and |1) (i.e. p 1(t) = 0). To do so we set −
ω = Δ+ ω0, and we go into the rotating frame as above. What is the Hamiltonian in the rotating frame? 

f) Assuming that ω0 ≫ ω1, show that |−1) is never populated (you can just give an intuitive explanation without 

doing any calculation)
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