Neutron Scattering



Cross Section

in / easy steps
|. Scattering Probability (TDPT)
2. Adiabatic Switching of Potential
3. Scattering matrix (integral over time)
4. Transition matrix (correlation of events)
5. Density of states
6. Incoming flux

/. Thermal average



|. Scattering Probability

® Probability of final scattered state, when
evolving under scattering interaction

Pscatt — ‘ <f‘ Ul(t) ‘7’> ‘2

® [ime-dependent perturbation theory
(Dyson expansion)



2.Adiabatic Switching

® Slow switching of potential
— time E ['Oo,oo] Particle
O T Scattering Medium .
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N —=_>

® V is approximately constant



3. Scattering Matrix

® Propagator for time t=-00 — t= 0 is called
the scattering matrix

[ (fIUr(ti = —o0,ty = 00) i) |* = | {f[ S]i) |

® S is expanded in series:

FLSD ) = —ivy, / Frt gt — mid(ws — wi) Vi
t1

(F15 i) = — (] (Z V |m) (m V) o " dtyeirmts [ draeren

— OO
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3. Scattering Matrix

® Be careful with integration (€ ...)

® First and second order simplify to
(FISW i) = —2mid(ws — wi) (F1V i)

Vi im) {m|V |i)

Wi; — Wm

(f1 8P i) = —2mid(wy —w;) » 1



4 Transition Matrix

® [he scattering matrix is given by the
transition matrix

(fI5 i) = =2mid(wy —ws) (f]T]i)

® which has the following expansion

ATy = (g vy + 3 LT 7 Prebuate

Wi — W — (w; — W ) (Wi — wn)



4 Transition Matrix

® Scattering probability
Py = 4r®| (f| T |i) [76° (wy — w;) = 27t | (f| T |d) [*0(wy — wi)
(not well defined because of t— )

® Scattering rate

Ws =27 (f| T |i) |*6(ws — wi)



4 Transition Matrix

® Target is left in one (of many possible) state.
® Radiation is left in a continuum state

® Separate the two subsystems
(no entanglement prior and after the
scattering event)
and rewrite the transition matrix



4 Transition Matrix

® Target: m) , €k
® Radiation: |k),ws

® Scattering rate Wy, = 2n| (f|T|i) |?0(Es — E;)

go back to definition, using explicit states

Wi =\<mf7kf|T\mi,k’i>\2/ gl (Wstes—wi—ei)t
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4 Transition Matrix

® Work in Schrodinger pict. for radiation and
Interaction pict. for target:

(my, kg Tr,r, [ma, ki) = (myp, kg| Ts,s, [mi, ki) '@ @dtetlermet
— <mf7 kf‘ TItSr (t) ‘m’ia kz> ei(wf_wi)t — <mf| Tk’f,k’i (t) \mz> ei(wf_wi)t
® Scattering rate is then a correlation

1 > (W —wj
Wii =gz [ €m0 il T, (0) mg) (| Tip ()

NOTE: Time evolution of target only
(e.g. lattice nuclei vibration)



S. Density of states

® # of states D, n(Ex) ~ [ d®n(

® Plane wave in a cubic cavity

9 L\°
k. — %nw s 3 = <%> A3k

T 3
p(EYdAEdQ = p(k)d*k = <—> k*dkd)

27

12



5. Density of states

dk

® = > =1
Photons, k=FE/hc T /he
L\° E? L\° w?
E)y=2-— =2 =] =&
p(E) (277) h3c3 (27T> hes
: : h?k?
® Massive particles, FE = S

o-(8) b-(2) 5



6. Incoming Flux

® # scatterer per unit area and time

# v )
@:A_t:ﬁ’ sincet = L/v, A= L

® Photons, & =c/L° ﬁ»

hk
ml>

® Massive particles, @ =
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/. Thermal Average

® Average over initial state of target

Ws(i = Q+dQ, E +dE) = p(E ZP ZWJ%

® Scattering Cross Section

zcuft
deE T2 Z/ die i (O) Tyt )>th o
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Neutrons

® Using ®,,. and p(E) for massive particles,
the scattering cross section is:

d%c 1 (mIBN\"kr [ i,y o
dew:%<2wh2> E/_ e <Tif(O)Tf@'(t)>

O
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Neutrons

® Evaluate T for neutrons, with states

ki) = u(r) = €7 /L%

® we obtain Tk, (t,Q) with @ =ks —k;

sl Tt k) = [ ' 5, (OT60) k(o

1 3 .. 1Q-r
:ﬁ/Lgd re'="T(r,t)
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Neutron lransition
Matrix

® We still need to take the expectation value
with respect to the target states,

1

T

d3r '@ (myg| T (r,t)|m;)
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Fermi Potential

® T is an expansion of the interaction
potential, here the nuclear potential

® analyze at least first order...
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Fermi Potential

® Nuclear potential is very strong (Vo~30MeV)
® And short range (ro ~ 2fm)

® Not good for perturbation theory!
® Fermi approximation

® What is important is the product
a oc Vorg

(a = scattering length) if krq < 1

20



Fermi Potential

neutron wavefunction

® Replace nuclear
— potential wit

weak, long range

pseudo-potential

__—

® Still, short range compared to wavelength

® Delta-function potential!

B 27 h?
L4

21
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Scattering Length

® Free scattering length a,
27 h* 21 h?
S ad(r) — i
H My
® bound scattering length b (include info about

isotope and spin)

My, A+1
b= —a~ a
L A

Mm.,

M + m,, )

Vi(r) bé (r)

(reduced mass: (=
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Transition Matrix

® To first order, the transition matrix is just
the potential

1

T

dr T (my |V (r, 1) [m;)

® Using the nuclear potential for a nucleus at
a position R, we have

1 O 2TH° 21 h?
By i@ 2" b(R)(R)T'(r,t) = i

Iy
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Transition Matrix

® To first order, for many scatter at position r;

27Th2 TORS
Tpit) = —— ) bie'@™

® The scattering cross section becomes

d20‘ 1 kf < : .
_ W rit bob. < —1Q -1y (0) zQ-rj(t)>
dQdw 21 k; /_006 %:“ : - th
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Scattering Lengths

® The bound scattering length depends on
isotope and spin

® We need to take the average b,b;, — byb;

® Finally, Bb; =525, +b (1—3;,)
® Coherent/Incoherent scattering length:

beb; = (b2 — b )80+ b = b2 + b



Scattering lengths

o Coherent scattering length

be = b

® Correlations in scattering events from
the same target
(scale-length over which the incoming
radiation is coherent in a QM sense)

® Simple average over isotopes and spins
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Scattering Lengths

¢ Incoherent scattering length
b? = (02— b ).

® Correlation of scattering events between
different targets

® Variance of the scattering length over
spin states and isotopes
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Cross-section

® Averaging over the scattering lenght

dQO' 1 k’f R —_— : .
_ w4t bob. < —1Q-1¢(0) zQ-rj(t)>
dQdw 27 K, /_Ooe ;“ ‘ ‘ th

we obtain Ss(Qw)

e

i’ 1k [™ | |
_ w4t b2 b2 < —1Q-1¢(0) zQ-rj(t)>
dQdw 27 k/ et D 0 b (e ) th

S(Qw)
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Cross-section

® Using the dynamic structure factors, we can
write the cross section as

d*o :Nk—f [sz (Qw)—ksz(Qw)}
d Qdw k, LN ¢ ’

® These functions encapsulate the target
characteristics, or more precisely, the target
response to a radiation of energy w

—

and wavevector Q
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Structure Factors

® Self dynamic structure factor (incoherent)

1 N tw st 1 —1Q1p(0) 1Q-1p(t)
$s@e) =5 [ “”<NZ€ e

14

® Full dynamic structure factor (coherent)

L[ e/ 1 —iQ-r¢(0) iQ-r; (1)
5Qu) =5 [ <NZG Oe

> £,J
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Intermediate Scattering Functions

® Self dynamic structure factor

1 o
$s(Qw) = 5= [ IRQD

(Q t) — <i ZeiQ'?‘e(O)eiQ°w(t)>
S , N

/
® Full dynamic structure factor

S(Qw) = ;ﬂ/ e“rtEF(Q, )

| | |
F(Q) t) — <N Z e_ZQmJ’ (O)ezQ'Tg(t)>
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® T[hese functions are the Fourier transform
(wrt time) of the structure factors

® They contain information about the target
and its time correlation.

® Examples:

- Lattice vibrations (phonons)

- Liquid/Gas diffusion
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Crystal Lattice

® Position in F(Q,t) ~ (33, ;e @@ iQe(®) )
is the nuclear lattice position

® Model as | D quantum harmonic oscillator

® position: z = \/2on (a+a)

® Hamiltonian (phonons)

2 2
H = 577 M;Oxz :hwo(aTa—l—%)
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Crystal Lattice

® Assumption: | D, | isotope, | spin state
— Self-intermediate structure function:

Fs(Q, 1) = (e=iQe(0)iQuu(t))
® Note: [.CC(O),ZIZ’(t)] ?é 0 (but it’s a number)

e Use BCH formula: e?deB = edAtBeldBl

Fs(Q,T) = <e—’iQ°[w(0)—w(t)]e+%[Q-w(O),Q-w(t)]>
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® Simplify using (Bloch) formula:

<6aa—|—BaT > _ €<(oza—|—BaT)2>

o we get Fs(Q,t) = e @ (877)/26+351Q2(0).Qa(t)
® with

(Az?) = 2(z?) + 2 (2(0)x(t)) — ([x(0), z(1)])
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® The crystal is usually in a thermal state.

® Calculate F(Q,t) for a number state and
then take a thermal average over
Boltzman distribution

21\ _ _h
(n|x=[n) = 5375-(2n + 1)

(n|x(0)x(t) |n) = 2J\;wo 21 cos(wt) + e*o?]

® Replace n — (n)
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Phonon Expansion

® | ow temperature (n)~0

<aj2> — 2]\?@)0 (x(0)x(t)) = 2]\;% piwot

212
® Expand in series of L1 /(hwo) = Ekin/Ebind
and calculate the dynamic structure factor

Ss(Qw) = F(F(Q,t)

hQ2

Ss(Q,w) = e~ @ 2hiag [5(w) hQ” 0(w — wop)

QMQJO




Phonon Expansion

® Neutron/q.h.o. energy exchange

Zero-phonon = no excitation

. . one-phonon = | quantum of Energy
(elastic scattering)

> N\ /
12 hQ 2
SS(va) ~ € “ 2Mewo {5(("}) | 2?\?&;0 6(("') o CU())—|—

- <2§L\?jo>25(w — 2wp) + ...

two-phonons = 2 quantum of Energy

n-phonons



Righ lemperature

® We find a “classical” result, where
Fg = FIG (1)
and the space-time self correlation
(classical) function G¢'(z,t)dx is the

probability of finding the h.o. at x, at time t,
if it was at the origin at time t=0.

F;l(Q,T) _ 6—(kaQ2/Mwg)[l—cos(wot)]
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