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We now proceed to the next step of our program of understanding the behavior of one part of a bipartite quantum 
system. We have seen that a pure state of the bipartite system may behave like a mixed state when we observe 
subsystem A alone. What if we want to know the dynamics of A only? Can we describe its evolution even if we don’t 
have full knowledge of B? (the bath) We assume that the state of the bipartite system undergoes unitary evolution: 
how do we describe the evolution of A alone? 

8.1 Combined evolution of system and bath 

We will first start introducing the evolution of an open quantum system by considering it as a part of a larger (closed) 
system undergoing the usual unitary evolution. The total Hilbert space is thus H = HS ⊗ HB and we assume the 
initial state is represented by the separable density matrix ρ = ρS ⊗ |0)(0|B 

23. The evolution of the total system is 
then 

†ρ(t) = USB (ρS ⊗ |0)(0|B )USB 

If we are only interested in the evolution of the system S we can at this point perform a partial trace on B 

† †ρS (t) = TrB {ρ(t)} = 
L 

(k|USB(ρS ⊗ |0)(0|B )U |k) = 
L 

(k|USB|0)ρS (0)(0|U |k)SB SB 
k k 

where {|k)} is an orthonormal basis for HB . As the result of (k|USB |0) = TrB {|0)(k|USB } we obtain an operator 
Mk that acts only on the S Hilbert space. For example, in a matrix representation the elements of Mk are simply 

i,j i,j M = (i|Mk |j) (with |i) , |j) defined on HS ); that is, we have M = Tr {|j, 0) (i, k|USB } = (i, k|USB |j, 0).k k 
Now we can write the evolution of the system only density matrix as 

†L
ρS (t) = M(ρS (t)) = MkρS (0)Mk 

k 

23 Here we only assume that the system B is in a pure state that we indicate as |0), we are not assuming that B is a TLS. 
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Since the propagator USB is unitary, we have that 
L 

M † 
k Mk = 11S 

k 

? Question: Prove the above. 
L L

(
L

)

M†Inserting the definition for Mk we have Mk = (0|U† |k) (k|USB|0) = (0|U† |k) (k| USB|0) = 11S .k k k SB SB k 

The properties of the system density matrix are preserved by the map: 

(
L

= 
L† 

k 
†is hermitian: ρA(t)

† )† } MkρS (0)
†M{

ρS 

1. ρS (t) MkρS (0)M ρS (t).= = k k k{L
2. ρS (t) has unit trace. (since Tr MkρS Mk 

}L
k MkM

† 
k 

† 
k = Tr {ρS 11})= Tr

3. ρS (t) is positive.
 

In the special case where there is only one term in the sum, we revert to the unitary evolution of the density matrix.
 
In that case, a pure state, for example, would remain pure. If that is not the case, that is, the evolution is not unitary,
 
it means that in the course of the evolution the system S and bath B became entangled, so that ρA is in a mixed
 
state after partial trace. Because of the loss of unitarity, superoperators are in general not invertible and thus there
 
is a specific arrow of time.
 

A. Ancillary Bath 

In many cases it is not possible to fully calculate the evolution of the total system (S +B) as either it is too large or 
we have imperfect knowledge of the bath. However, if we have a description of the system dynamics in terms of the 
operator sum, it is possible to always augment the system and find a larger, composite system that evolves unitarily 
and yields the operator sum upon partial trace. The ancillary system might however not have all the characteristic 
of the (unknown) physical bath. What we are looking for is in fact a minimal description for the bath. 
We choose as ancillary Hilbert space HB a space of dimensions at least equal to the number of terms in the operator 
sum. This space will have then a set of orthonormal vectors {|k)}, and we can define a normalized state |0)B on HB . 
Then the unitary evolution operator of the combined system is defined by imposing the relationship: 

USB (|ψ)S ⊗ |0)B ) = 
L

(Mk ⊗ 11)(|ψ)S ⊗ |k)B , ) ∀|ψ)S ∈ HS 

k 

This ensures that the evolution of the reduced system is given by the Kraus map. The total system evolution is: 

USB(ρS ⊗ |0)(0|B )U
† = 

L
(Mk ⊗ 11) |ψS , k) (ψS , h| (MSB 

† 
h ⊗ 11) 

k,h 

and upon taking the partial trace: 
 

L † 
h ⊗ 11) |j)ρS (t) = TrB {ρ(t)} = (j|

L
(Mk ⊗ 11) |ψS , k) (ψS , h| (M

j k,h 

L
(j|k)(h|j)(M † 

k |ψ)(ψ|Mh)= 
j 

L † 
j |ψ)(ψ|MjρS (t) M= 

j 

Although this relationship doesn’t fully define the operator on the full Hilbert space, we can extend the operator as 
desired. In particular we want it to be unitary (and this imposes added constraints). As the operator USB as defined 
above preserves the inner product on the full Hilbert space, a unitary extension of it to the full space does indeed 
exists. Furthermore, we can check that upon taking a partial trace on B we retrieve the operator sum as desired, 
for an initial pure state on S. But any density matrix can be expressed as an ensemble of pure states, hence this 
property is true for any general state on S. 
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B. Non-uniqueness of the sum representation 

The operator sum is of course not unique, since the choice of the set {|k)} was quite arbitrary and not unique. If we 
had chosen another set {|h)} we would have arrived to a different sum 

†ρS (t) = 
L 

NhρS (0)Nh 
h 

? Question: What is the relationship between the operators M and N?
 

They are related by the simple unitary transformation that connects the two sets of orthonormal vectors Nh = UhkMk with
 
L |h) = Uhk |k).k 

8.2 Superoperators 

We want to describe the quantum evolution of systems in the most general case, when the system evolves non-
unitarily due to the presence of an environment24 . As we have seen, the states need to be described by density 
operators. Therefore, the evolution is to be represented by a map connecting the initial density matrix to the evolved 
one ρ(t) = M[ρ(0)]. The most general characteristics of this map will be determined by the fact that the properties 
of the density matrix should be in general maintained (such as unit trace). As the map M is an operator acting on 
operators, it is called a superoperator. 
Most generally, we can define a quantum operator describing the time evolution law for density matrices as a map 
M : ρ → ρ ′ with the following properties 

1. Linear 
2. Trace preserving 
3. Hermiticity preserving 
4. Positive 
4’ (Completely positive) 

A. Linearity 

Although a non-linear map could also always map a density matrix to another density matrix, if we impose linearity 
we arrive at results that are more physical. Specifically, the linearity property retains the ensemble interpretation of 
the density matrix. What we mean is the following. Suppose we can write a density operator as a linear superposition 
of two densities, ρ = aρ1 + (1 − a)ρ2. The meaning of this expression is that with probability a we have a system 
described by ρ1 and with probability 1 − a by ρ2. If the map describing the time evolution law is linear, this 
probabilistic interpretation is valid also for the evolved state. Assume now that the map is not linear, for example it 
depends on the trace of the density matrix: M(ρ) = eiATr{ρM }ρe−iATr{ρM }, where M is an operator in the Hilbert 
space of ρ and A an Hermitian operator. We now consider a density operator ρ1 such that Tr {ρ1M} = 0. We assume 
that we do not know exactly how we prepared the system, but with 50% probability is in ρ1. Assume then the density 

1matrix ρ = (ρ1 + ρ⊥), such that Tr {ρ⊥M} = 0. Then, M(ρ) = ρ as the traces are zero. If we now instead consider 2
1the initial density matrix ρ = (ρ1 + ρI) (that is, still a 50% probability of being in ρ1), where Tr

{
MρI

} 
> 0 we 2

obtain an evolution for ρ1. That means, that in the two scenarios, the system behaves differently, even if we had 
prepared it in the state ρ1 (remember the probabilistic interpretation), so that the evolution of a potential state of 
a system ρ1 depends on another potential state (ρ⊥ or ρI), even if this second state never occurred. 

24 This presentation in this section and the following examples are taken from J. Preskill’s notes at 
http://www.theory.caltech.edu/people/preskill/ph229/
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B. The superoperator preserves trace and hermiticity 

Since the density matrix trace has the property to describe the sum of the probabilities of all possible states in 
the ensemble, it is important that the trace be preserved. An exception can be made for operators that describe 
measurement (and not time evolution). In that case 0 ≤ Tr {ρ} ≤ 1. In this case, Tr {ρ} represent the probability 
that the measurement outcome described by the map M has occurred and the normalized final state is ρ/Tr {ρ}. As 
more than one outcome of the measurement is possible, the probability of obtaining ρ might be less than one. 
The superoperator preserves the hermiticity of the density matrix: [M(ρ)]† = M(ρ) if ρ† = ρ 

C. Positivity and complete positivity 

The property of positivity means that the map is such that M(ρ) is non-negative if ρ is. Although this condition is 
enough to obtain a valid density matrix, it leads to a contradiction when we consider composite systems. Let’s take 
a valid map M1 on system 1. Then, if we consider a bipartite system and we apply the map M1 ⊗ 11 we would like 
to still obtain a density matrix on the composite system. Unfortunately, if the map is simply positive, this is not 
always the case. Thus, we require it to be completely positive. A map is completely positive if M1 ⊗ 112 is positive 
for any extension H2 of the Hilbert space H1. 
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8.3 The Kraus Representation Theorem
 

We have seen in the preceding sections two different ways of describing the evolution of an open system.
 
The first description started from the evolution of a composite system (including the system of interest and a bath)
 
and by tracing over arrived at a description of the open evolution via the operator sum.
 
The second description was instead quite abstract, and only defined the properties of the linear map describing the
 
evolution in order to arrive at an acceptable (physical) evolved state (that still possess the characteristics of a density
 
operator). The Kraus representation theorem reconciles these two description, by stating that they are equivalent.
 

• Theorem: Any operator ρ → S(ρ) in a space of dimensions N2 that obeys the properties 1-3,4’ (Linearity, TraceS 
preservation, Hermiticity preservation, complete positivity) can be written in the form: 

K K

S(ρ) = 
L 

MkρM
† 
k , with 

L 
M † 
k Mk = 11 

k=1 k=1 

where K ≤ N2 is the Kraus number (with NS the dimension of the system). As seen above, the Kraus representationS 
is not unique25 .
 
We consider three important examples of open quantum system evolution that can be described by the Kraus
 
operators. To simplify the description we consider just a TLS that is coupled to a bath.
 

8.3.1 Amplitude-damping 

The amplitude-damping channel is a schematic model of the decay of an excited state of a (two-level) atom due 
to spontaneous emission of a photon. By detecting the emitted photon (“observing the environment”) we can get 
information about the initial preparation of the atom. 
We denote the atomic ground state by |0)A and the excited state of interest by |1)A. The “environment” is the 
electromagnetic field, assumed initially to be in its vacuum state |0)E . After we wait a while, there is a probability p 
that the excited state has decayed to the ground state and a photon has been emitted, so that the environment has 
made a transition from the state |0)E (“no photon”) to the state |1)E (“one photon”). This evolution is described 
by a unitary transformation that acts on atom and environment according to 

|0)S|0)E → |0)S |0)E 

√ |1)S |0)E → 
�

p|0)S |1)E1− p|1)S |0)E + 

(Of course, if the atom starts out in its ground state, and the environment is at zero temperature, then there is no 
transition.) 
By evaluating the partial trace over the environment, we find the Kraus operators 

√ 
M0 = (0|USE |0) = 

( 
1 √ 0 

) 

, M1 = (1|USE |0) = 

( 
0 p 

) 

0 1− p 0 0 

The operator M1 induces a “quantum jump”, the decay from |1)A to |0)A, and M0 describes how the state evolves 
if no jump occurs. The density matrix evolves as 

† 
0 + M1ρM

√( 
ρ00 1− pρ01 

) ( 
pρ11 0 

)
√= +
1− pρ10 (1 − p)ρ11 0 0 

S(ρ) = M0ρM
† 
1 = 

√( 
ρ00 + pρ11 1− pρ01 

)
= √ .

1− pρ10 (1 − p)ρ11 

25 The proof can be found in Prof. Preskill online notes. 
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If we apply the channel n times in succession, the ρ11 matrix element decays as ρ11 → ρ11(1 − p)n so if the 
probability of a transition in time interval δt is Γ δt, then the probability that the excited state persists for time t is 
(1−Γ δt)t/δt ≈ e−Γt, the expected exponential decay law. Also we have ρ12 → ρ12(1− p)n/2 ≈ ρ12e−Γ t/2. As t → ∞, 
the decay probability approaches unity, so 

( 
ρ00 + ρ11 0 

)
S(ρ) = 

0 0 

The atom always winds up in its ground state. This example shows that it is sometimes possible for a superoperator 
to take a mixed initial state to a pure state. 
In the case of the decay of an excited atomic state via photon emission, it may not be impractical to monitor the 
environment with a photon detector. The measurement of the environment prepares a pure state of the atom, and 
so in effect prevents the atom from decohering. Returning to the unitary representation of the amplitude-damping 
channel, we see that a coherent superposition of the atomic ground and excited states evolves as 

� √ 
(a|0)S + b|1)S ) |0)E → a|0)S + b 1− p|1)S 

� 
|0)E + p|0)A|1)E 

If we detect the photon (and so project out the state |1)E of the environment), then we have prepared the state |0)A 
of the atom. In fact, we have prepared a state in which we know with certainty that the initial atomic state was the 
excited state |1)A as the ground state could not have decayed. On the other hand, if we detect no photon, and our 
photon detector has perfect efficiency, then we have projected out the state |0)E of the environment, and so have 
prepared the atomic state 

a|0)S + b 1− p|1)S 

√ |a|2 

(or more precisely, if we normalize it: (a|0)S + b 1− p|1)S )/ 1− pb2 ). Then p(0) = |a|2 → 1−p|b|2 > |a|2 . 
The atomic state has evolved due to our failure to detect a photon, it has become more likely that the initial atomic 
state was the ground state! 

8.3.2 Phase-damping 

Phase damping describes a process where the system interacts with a large environment composed of many small 
subsystems. The interaction of the system with each of the environment subsystems is weak (compared to the system 
energy, but strong compared to the subsystem energy). Therefore the system is unchanged, while the environment 
subsystem is changed. Since there will be many of these interactions with the environment subsystem, their combined 
action does have an effect on the system, however it will not be enough to change its energy. 
An example is the interaction of a dust particle with photons. Collision of the particle with one photon is not going 
to change the particle state. However, if the particle was in the ground or excited state, the photon will acquire more 
or less energy in the collision, thus being excited to its first or second excited state. We now formalize this model. 
When looking at the unitary evolution of this process, only the environment changes: 

√ √ |0)S |0)E → 1− p|0)S |0)E + p|0)S |1)E = |0)S ( 1− p|0)E + p|1)E ) 

√ √ |1)S |0)E → 1− p|1)S |0)E + p|1)S |2) = |1)S ( 1− p|0)E + p |2) )E E 

Thus a possible unitary is √ √ 
1√− p √ p 0 0 0 0 

 

p 1− p 0 0 0 0 
0 0 1 √ 0 0 0 


U = 

 √ 
0 0 0 1− p 0 p  
0 0 0 0 1 0 

√ √ 
 

0 0 0 p 0 1− p 

The Kraus operator are found by operating the partial trace of the operator above: 

√ √ 
M0 = (0|U |0) = 1− p11 M1 = (1|U |0) = p|0)(0| M2 = (2|U |0) = p|1)(1| 
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The state evolution is then 

3
†S(ρ) = 

L 
MkρM = (1− p)ρ + p|0)(0|ρ|0)(0|+ p|1)(1|ρ|1)(1|k 

k=1 

In matrix form: 

( 
ρ00 (1 − p)ρ01 

)
S(ρ) = 

(1− p)ρ10 ρ11 

Considering the Bloch vector: [nx, ny, nz] → [(1− p)nx, (1− p)ny, nz] (that is, the transvers component are reduced. 
For p = 1 the state becomes diagonal). Assume p = p(∆t) = Γ ∆t is the probability of one such scatter events 
during the time ∆t. Then if we have n such events in a time t = n∆t the off-diagonal terms become ∝ (1 − p)n = 

−Γt(1− Γ ∆t)t/∆t ≈ e : 
−Γtρ01

( 
e

)
S(ρ, t) = −

ρ
Γt
00 

ρ10e ρ11 

Consider for example an initial pure state α|0)+ β|1). At long times, this state reduces to: 

−Γtαβ∗( 
|α|2 e

) 
t→∞

( 
|α|2 0 

)
S(ρ, t) = −→−Γtα∗βe |β|2 0 |β|2 

thus any phase coherence is lost and the state reduces to a classical, incoherent superposition of populations. Because 
in this process phase coherence is lost (but the energy/population is conserved) the process is called dephasing and 
the time constant 1/Γ is usually denoted by T2. Then we have a representation of the superoperator, by expressing 

−Γt −Γtρ as a linear vector: S(ρ, t) = S(t)ρ, where S = diag([1, e , e , 1]). 

8.3.3 Depolarizing process 

The depolarizing channel is a model of a decohering qubit that has particularly nice symmetry properties. We can 
describe it by saying that, with probability 1 - p the qubit remains intact, while with probability p an “error” occurs. 
The error can be of any one of three types, where each type of error is equally likely. If {|0)|1)} is an orthonormal 
basis for the qubit, the three types of errors can be characterized as: 

1. Bit-flip error: |ψ) → σx|ψ) or |0) → |1) & |1) → |0). 
2. Phase-flip error: |ψ) → σz |ψ) or |0) → |0) & |1) → −|1). 
3. Both errors: |ψ) → σy|ψ) or |0) → i|1) & |1) → −i|0). 
If an error occurs, then |ψ) evolves to an ensemble of the three states σx|ψ), σy |ψ), σz|ψ). 
The depolarizing channel can be represented by a unitary operator acting on HSE = HS ⊗ HE , where HE has 
dimension 4. The unitary operator USE acts as 

USE |ψ)S ⊗ |0)E → 1− p|ψ)S ⊗ |0)E+ 

� 
p

+ [σx|ψ)S ⊗ |1)E + σy |ψ)S ⊗ |2) + σz |ψ)S ⊗ |3) ]E E3 

The environment evolves to one of four mutually orthogonal states that “keep a record” of what transpired; if we 
could only measure the environment in the basis {|µ) , µ = 0, 1, 2, 3}, we would know what kind of error had occurred 
(and we would be able to intervene and reverse the error). 
Kraus representation: To obtain an operator-sum representation of the channel, we evaluate the partial trace over 
the environment in the {|µ)E } basis. Then 

Mµ = (µ|USE|0)E 

� 
p 

� 
p 

� 
p

M0 = 1− p11, M1 = σx, M2 = σy, M3 = σz
3 3 3 
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A general initial density matrix ρS of the qubit evolves as 

ρ → ρ ′ = (1 − p)ρ + 
p 
(σxρσx + σyρσy + σz ρσz)

3

It is also instructive to see how the depolarizing channel acts on the Bloch sphere. An arbitrary density matrix for a 
1
2 (11+in · iσ), where in is the Bloch vector (with P |in| the polarization of the spin). 

σz and σxσz σx = σyσz σy = −σz, 
single qubit can be written as ρ = = 

1
2Suppose we rotate our axes so that in = iz and ρ = (11+Pzσz ). Then since σz σzσz = 

we find 
p 1 2p 1 1 

[ 
4 

]
ρ ′ = 1− p + (11− Pz σz) + (11− Pz σz) = 11 + (1 − p)Pz σz

3 2 3 2 2 3

4
3

4
3

′ ′ p)Pz . From the rotational symmetry, we see that P = (1−= (1−or P p) irrespective of the direction in which Pz 
points. Hence, the Bloch sphere contracts uniformly under the action of the channel; the spin polarization is reduced 

4 
3by the factor (1 − p) (which is why we call it the depolarizing process). This result was to be expected in view of 

4
3the observation above that the spin is totally “randomized” with probability p. 

Why do we say that the superoperator is not invertible? Evidently we can reverse a uniform contraction of the sphere 
with a uniform inflation. But the trouble is that the inflation of the Bloch sphere is not a superoperator, because 
it is not positive. Inflation will take values of P ≤ 1 to values P > 1, and so will take a density operator to an 
operator with a negative eigenvalue. Decoherence can shrink the ball, but no physical process can blow it up again! 
A superoperator running backwards in time is not a superoperator. 
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8.4 The Master Equation
 

8.4.1 Markov approximation 

In the case of coherent evolution, we find it very convenient to characterize the dynamics of a quantum system with 
a Hamiltonian, which describes the evolution over an infinitesimal time interval. The dynamics is then described 
by a differential equation, the Schrödinger equation, and we may calculate the evolution over a finite time interval 
by integrating the equation, that is, by piecing together the evolution over many infinitesimal intervals. It is often 
possible to describe the (not necessarily coherent) evolution of a density matrix, at least to a good approximation, 
by a differential equation. This equation, the master equation, will be our next topic. In fact, it is not at all obvious 
that there need be a differential equation that describes decoherence. Such a description will be possible only if the 
evolution of the quantum system is “Markovian,” or in other words, local in time. If the evolution of the density 
operator ρ(t) is governed by a (first-order) differential equation in t, then that means that ρ(t + dt) is completely 
determined by ρ(t). 
In general the density operator ρA(t + dt) can depend not only on ρA(t), but also on ρA at earlier times, because 
the environment (reservoir) retains a memory of this information for a while, and can transfer it back to system. 
An open system (whether classical or quantum) is dissipative because information can flow from the system to the 
reservoir. But that means that information can also flow back from reservoir to system, resulting in non-Markovian 
fluctuations of the system. 
Still, in many contexts, a Markovian description is a very good approximation. The key idea is that there may be a 
clean separation between the typical correlation time of the fluctuations and the time scale of the evolution that we 
want to follow. Crudely speaking, we may denote by δtE the time it takes for the reservoir to “forget” information that 
it acquired from the system. After time δtE we can regard that information as forever lost, and neglect the possibility 
that the information may feed back again to influence the subsequent evolution of the system. Our description of 
the evolution of the system will incorporate “coarse-graining” in time; we perceive the dynamics through a filter 
that screens out the high frequency components of the motion, with ω ≫ 1/δtcoarse. An approximately Markovian 
description should be possible, then, if δtE ≪ δtcoarse; we can neglect the memory of the reservoir, because we are 
unable to resolve its effects. This “Markovian approximation” will be useful if the time scale of the dynamics that 
we want to observe is long compared to δtcoarse, e.g., if the damping time scale δtdamp satisfies 

δtdamp ≫ δtcoarse ≫ δtE 

8.4.2 Lindblad equation 

Our goal is to generalize the Liouville equation ρ̇ = −i[H, ρ] to the case of Markovian but non-unitary evolution, for
 
which we will have ρ̇ = L[ρ]. The linear operator L, which generates a finite superoperator in the same sense that a
 
Hamiltonian H generates unitary time evolution, will be called the Lindbladian.
 
We can derive the Lindblad equation from an infinitesimal evolution described by the Kraus sum representation,
 
with the following steps:
 

1. From the Kraus sum we can write the evolution of ρ from t to t + δt as: ρ(t + δt) = 
L

Mk(δt)ρ(t)Mk 
† 
k (δt). 

2. We now take the limit of infinitesimal time, δt → 0. We only keep terms up to first order in δt, ρ(t+δt) = ρ(t)+δt δρ.√(0) (1) (2)
This implies that the Kraus operator should be expanded as Mk = M + δtM + δtM + . . . .k k k 
Then there is one Kraus operator such that M0 = 11+ δt(−iH+K) +O(δt2) with K hermitian (so that ρ(t + δt)√ 
is hermitian), while all others have the form: Mk = δtLk + O(δt), so that we ensure ρ(t + δt) = ρ(t) + δρδt: 

ρ(t + δt) = M0ρ(t)M
† 
0 + 

L 
MkρM

† 
k 

k>0 

= [11 + δt(−iH+ K)]ρ[11 + δt(iH+ K)] + δt 
L 

LkρL
† 
k 

k 

= ρ − iδt[H, ρ] + δt(Kρ + ρK) + δt 
L 

LkρL
† 
k 

k 

69 



� �

3. K and the other operators Lk are related to each other, since they have to respect the Kraus sum normalization 
condition, 

1 L 
LK = − † 
kLk. 2 

k>0 

4. Finally we substitute K in the equation above and take the limit δ → 0: ρ(t + dt) = ρ(t) + dtρ̇. We thus obtain 
the Lindblad equation 

(
Lkρ(t)L

† 
k − ρ(t)L† 

kLk

)ML 1 1 
L† 
kLkρ(t)−ρ̇(t) = L[ρ] = −i[H, ρ(t)] + 

2 2 
k=1 

The first term in L[ρ] is the usual Schrödinger term that generates unitary evolution (thus we identify the hermitian 
operator H with the usual Hamiltonian). The other terms describe the possible transitions that the system may 
undergo due to interactions with the reservoir. The operators Lk are called Lindblad operators or quantum jump 

operators. Each LkρL
† 
k L† 

k ρL† 
kLk terms areterm induces one of the possible quantum jumps, while the − 1 

2 Lkρ − 1 2
needed to normalize properly the case in which no jumps occur.
 
If we recall the connection between the Kraus representation and the unitary representation of a superoperator, we
 
clarify the interpretation of the master equation. We may imagine that we are continuously monitoring the reservoir,
 
projecting it in each instant of time onto the |µ) basis. With probability 1−O(δt), the reservoir remains in the state
E 
|0)E , but with probability of order δt, the reservoir makes a quantum jump to one of the states |µ) . When we sayE 
that the reservoir has “forgotten” the information it acquired from the system (so that the Markovian approximation
 
applies), we mean that these transitions occur with probabilities that increase linearly with time.
 
This is equation is also called the Kossakowski-Lindblad equation26 .
 
The Lindblad equation above is expressed in the Schrödinger picture. It is possible to derive the Heisenberg picture
 
Lindblad equation, which has the form:
 

dx 
= i[H, x] +

L 1 
L† 
kxLk − L† 

kLkx + xL† 
kLk ,

dt 2 
k 

where x is the observable under study.
 
Another way to express the Lindblad equation is for a ”vectorized” density matrix: ρ̇ = (H+G)ρ, with the generator
 
G: 

ML 1 1
L̄m 

† 
mLm)− (L̄† L̄mG = ⊗ Lm − 11⊗ (L )⊗ 11m2 2

m=0 

and the Hamiltonian part will be given by H = −i(H⊗ 11− 11⊗H). In this form, the Lindblad equation becomes a 
linear equation (a matrix multiplying a vector, if we are considering e.g. discrete systems). Thus it is “easy” to solve 
the differential equation, finding: 

ρ(t) = exp [(H+ G)t] ρ(0), 
where we identify the superoperator S = exp [(H+ G)t]. More details on how to convert from Kraus sum, to Lindblad 
to superoperator description of the open quantum system dynamics can be found in T. F. Havel, Robust procedures 
for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups, J. Math. Phys. 
44, 534 (2003). 

A. Example: spin-1/2 dephasing 

Dephasing, or transverse relaxation, is the phenomenon associated with the decay of the coherence terms (off­
diagonals) in the density matrix. In NMR, since the signal is due to the ensemble of spins, a coherence term which 
lasts forever would require all the same spins of the different molecules to precess about the magnetic field at exactly 
the same rate. As previously mentioned, the frequency of a single spin depends on the local magnetic field, which 
depends on the external field, and on the field created by the surrounding spins. Due to rapid tumbling, the average 

26 Andrzej Kossakowski On quantum statistical mechanics of non-Hamiltonian systems, Rep. Math. Phys. 3 247 (1972) 
Göran Lindblad On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48 119 (1976)). 
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field over time is the same, but does vary across the sample at a particular given time. This instantaneous variation
 
causes the identical spins of all the molecules to slowly desynchronize and therefore lose coherence across the sample.
 
Another example of dephasing was already presented when we described phase-damping for a dust particle interacting
 
with many photons.
 
The dephasing noise can be thought as arising from random z rotation across the sample, so that the state of the
 
system can be described by a statistical average over a distribution of rotation angles q(ϑ):
 

J 
iϑ/2σzSd(ρ) = dϑq(ϑ)e −iϑ/2σz ρ(0)e

Consider an initial density operator (
ρ00 ρ01

)
ρ(0) = 

ρ10 ρ11

−iϑ/2σzThe evolution under a propagator Uϑ = e gives 
( )

ρ00 ρ01e
−iϑ 

ρ(ϑ) = 
ρ10e

iϑ ρ11 

Taking the integral over the angle distribution we find 
( )

ρ00 ρ01Γ 
ρ(ϑ) = ,

ρ10Γ ∗ ρ11 

where Γ = 
(
e−iϑ

) 
= 
J 
q(ϑ)e−iϑdϑ. If q(ϑ) = q(−ϑ) (as given by an isotropic environment) we obtain 

(
e−iϑ

) 
= (cosϑ). 

For a non-Markovian environment where memory effects are present, we can describe the distribution q(ϑ) as a 

Gaussian stochastic process, so that Γ = (cosϑ) ≈ e −(ϑ2)/2 = e−t
2/T2

2 
. For a Markovian process instead we have an 

−t/T2exponential decay Γ = e . 
We can also explicitly evaluate Sd: 

J
Sd(ρ) = dϑq(ϑ)[cos(ϑ/2)11− i sin(ϑ/2)σz]ρ(0)[cos(ϑ/2)11 + i sin(ϑ/2)σz ] = 

J
= dϑq(ϑ)[cos2(ϑ/2)ρ(0) + sin2(ϑ/2)σz ρ(0)σz − i cos(ϑ/2) sin(ϑ/2)(σz ρ(0)− ρ(0)σz )] 

By evaluating the integral, and assuming again a symmetric distribution, we have: 

Sd(ρ) = (1− p)ρ(0) + pσzρ(0)σz 

1−Γwhere p = 
J 
dϑq(ϑ) sin2(ϑ/2). By comparison with the previous result we find p = .2 

From the superoperator, we can find the corresponding Kraus sum decomposition: 

√ 
M0 = 1− p11, M1 = 

We want now to describe this same evolution under a dephasing environment by a Lindblad equation. Notice that 
−t/T2this is going to be possible only if we have a Markovian environment, Γ = e . 

1+Γ 1−Γ −δt/T2Consider the action of the superoperator Sd(ρ) = ρ(0)+ ρ(0)σz . If we consider a small time Γ = e ≈2 2 σz
1− δt/T2 and we obtain: 

γδt γδt 
Sd(ρ, δt) = ρ − ρ + σz ρσz

2 2 

where γ = 1/T2. Then, taking the difference ρ(δt)− ρ(0) in the limit δt → 0 we have 
∂ρ γ γ 1 

= (σz ρσz − ρ) = (σz ρσz − {σzσz , ρ})
∂t 2 2 2

where we used the fact σ2 = 11. Thus γ is the Lindblad operator for dephasing.z 2σz 
−(t/T2)

2 
Assume now that we had considered a non-Markovian environment, for which Γ = e . Then if we tried to find 
the infinitesimal time evolution, we cannot define a differential equation, since ρ(δt)− ρ(0) is not ∝ δt. For this type 
of environment, the Lindblad equation cannot be defined. 

pσz 
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8.4.3 Redfield-Born theory of relaxation 

Consider a system S coupled to an environment E (the heat bath) such that 

H = H0 + V = HS + HE + V , 

and V describes the interaction between the system and the environment. Most generally it will take the form 
V = 

L
Ak ⊗ Bk(t), with A acting on the system and B on the environment (and we have even allowed for a k 

time-dependence of the random environment field). In the Schrödinger picture, the time evolution of the density 
dρ(t)matrix is given by the Liouville equation, il = [H, ρ(t)]. dt 

Define the interaction picture density matrix 

i 
�

i 
�

−(HS+HE)tρ(t)e (HS+HE)tρI (t) ≡ e , 

and similarly the interaction-picture system-environment interaction 

i 
�

i 
�

(HS+HE)tV e− (HS+HE)tVI (t) ≡ e . 

Then the evolution in the interaction picture is given by 

il 
dρI (t) 

= e 
i 
�

i 
�

i 
�

i 
�

−H0t ([H, ρ(t)]− [H0, ρ(t)]) e H0t −H0t[V, ρ(t)]e H0t = [VI (t), ρI (t)].= e 
dt 

This has the formal solution 
t1 

J 
ρI (t) = ρI (0) + dt1 [VI (t1), ρI (t1)] 

il 0 

(Note that this is the same equation as above, except in integral form). 
Expanding once (by inserting the same equation at the place of ρI (t)) we obtain, 

t t t11 
J 

1 
J J 

ρI (t) = ρI (0) + dt1 [VI (t1), ρI (0)] + dt1 dt2 [VI (t1), [VI (t2), ρI (t2)]] 
il (il)2 0 0 0 

We could repeat this process to obtain an infinite series (the Dyson series we already saw).
 
Let us concentrate instead on the evolution of the (interaction picture) reduced density matrix ρS = TrE {ρI } ,
 
obtained by tracing over the environment. To obtain the average density operator, we also need to take an ensemble
 
average over the random fluctuating environment:
 

t t t11 
J 

1 
J J 

ρS(t) = ρS(0) + dt1 (TrE {[VI (t1), ρI (0)]})+ dt1 dt2 (TrE {[VI (t1), [VI (t2), ρI (t2)]]}) . 
il (il)2 0 0 0 

We want to find an explicit expression for the system evolution only (in the form of a differential equation). To do 
this, we will make a number of approximations. 

A. Simplification: Separability and energy shift 

We first assume that at time t = 0 the system and environment are in a separable state: 

ρ(0) = ρS(0)⊗ ρE(0). 

(this can always be obtained by choosing t = 0 appropriately).
 
This condition helps simplifying the second term in the LHS of the expression above. We have
 

TrE {[VI (t1), ρI (0)]} = 
L

[AI (t1), ρS(0)]TrE {Bk(t)ρE} , 
k 
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that is, we consider the expectation value of the operators Bk. In general we will also need to take an ensemble 
average over the random fluctuating field (Bk(t)), as we look at expectation values for the density operator. 
We can now make the assumption that (BE)E = 0, which implies (VI (t))E ∼ TrE {VI (t)ρE (0)} = 0. This is not 
restrictive, since, if V is of the form V = AS ⊗BE with (BE)  = 0 we can replace V with V = AS ⊗ (BE − (BE) ), E E
and simultaneously add AS (BE) to HS . With this condition, (V )E = 0 and since ρE(0) has the same form in both E 
Schrödinger and interaction pictures, the result holds in the interaction picture also. The same argument can be 
made if V = 

L
AS,α ⊗BE,α. Then the second term in the equation above vanishes and we have α 

t t11 
J J 

ρS(t) = ρS(0) + dt1 dt2 (TrE {[VI (t1), [VI (t2), ρI (t2)]]}) . 
(il)2 0 0 

B. Assumption 1: Born approximation 

We can always write (in any picture) ρ(t) = ρS(t) ⊗ ρE(t) + ρcorrelation(t), which may be taken as a definition of 
ρcorrelation. Let us assume (as done in the previous section) that the interaction is turned on at time t = 0 , and 
that prior to that the system and environment are not correlated (ρcorrelation(0) = 0). This assumption is not very 
restrictive, since we can always find a time prior to which the system and environment did not interact. Now however 
we make a stronger assumption. 
We will assume that the coupling between the system and the environment is weak, so that ρ(t) ≈ ρS(t)⊗ ρE(t), for 
timescales over which perturbation theory remains valid. Furthermore, we will assume that the correlation time τE 
(and thus the relaxation time) of the environment is sufficiently small that ρE(t) ≈ ρE(0) if t ≫ τE . 
Note that since we assume that the environment is in a thermal equilibrium, it has a thermal density matrix 

EnE−1ρE(0) = 
L 

e kBT |nE) (nE | ,ZE n 

which is a stationary state, i.e., [ρE(0), HE ] = 0 , so that ρE(0) has the same form in both the interaction picture and 
Schrödinger picture. Then 

t t11 
J J 

ρS(t) = ρS(0) + dt1 dt2 (TrE {[VI (t1), [VI (t2), ρS(t2)⊗ ρE(0)]]}) . 
(il)2 0 0 

We can also go further and explicitly write the partial trace: 

(TrE {[VI (t1), [VI (t2), ρS(t2)⊗ ρE(0)]]}) = 
L 

(Bk(t1)Bh(t2)) [AIk(t1), [AhI (t2), ρS(t2)]] 
k,h 

where (Bk(t1)Bh(t2)) = Gk,h(t1, t2) is the correlation function for the environment. 
Differentiating, we get 

td 1 
J 

ρS(t) = ds (TrE {[VI (t), [VI (s), ρS(s)⊗ ρE(0)]]}) . 
dt (il)2 0 

or 
td 1 

J 
ρS(t) = ds 

L 
(Bk(t)Bh(s))

[
AIk(t), 

[
Ah
I (s), ρS(s)

]] 
. 

dt (il)2 0 k,h 

This should properly be considered a difference equation, since we have assumed that t ≫ τE . 

C. Assumption 2: Markov approximation 

We will also assume that we are working over timescales that are shorter than the gross timescale over which the 
system evolves, so that ρS(s) ≈ ρS(t). Thus we can replace ρS(s) in the integral with ρS(t). We finally get the 
Redfield equation: 

td 1 
J 

ρS(t) = ds TrE {[VI (t), [VI (s), ρS(t)⊗ ρE(0)]]}
dt (il)2 0 
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0 

or 
td 1 

J 
ρS(t) = ds 

L 
(Bk(t)Bh(s))

[
AIk(t), 

[
Ah
I (s), ρS(t)

]] 
. 

dt (il)2 0 k,h 

′ We can change variables from s → s = t − s (so that we change the integrals as:
J t 
ds → 

J 0 
d(t − s ′ ) = −

J 0 
ds ′ = 0 t tJ t 

ds ′ ). Then 

td 1 
J 

ρS(t) = ds 
L 

(Bk(t)Bh(t − s))
[
AIk(t), 

[
Ah
I (t − s), ρS(t)

]] 
. 

dt (il)2 0 k,h 

The correlation time of the thermal bath E is assumed to be very short, so that the correlation function (Bk(t1 − t2)Bh(0))E 
differs only significantly from zero when t1 ≈ t2 . We can therefore extend the limit of integration to ∞ (and call 
t − s = τ): 

d 1 
J ∞ 

ρS(t) = dτ 
L 

(Bk(t)Bh(τ))
[
AIk(t), 

[
Ah
I (τ), ρS(t)

]] 
. 

dt (il)2 0 k,h 

D. Spectral densities 

The next step in the simplification program is to take the expectation values with respect to the eigenstates of the 
Ap −iωptsystem and then Fourier transform. We will write Ak(t) = 

L 
p k e : 

d LLJ ∞ �
Ap −iωpt 

�
Aq −iωq

�� 
ρS(t) = dτ Gkh(τ) ke , he 

(t−τ ), ρS(t) . 
d t (il)2 0k,h p,q 

Here we used the fact that G(t, τ) is stationary, and thus depend only on the difference t − τ , G(t, τ) = G(t − τ). We 
then changed variables from τ → t − τ . We can rewrite the equation as 

d −i(ωp+ωq)t 
J ∞ 

iωqτρS(t) = 
LL 

[Ak
p , [Aq , ρS(t)]] e dτ Gkh(τ)e .hd t (il)2 0k,h p,q 

Thus we have the integral 
J ∞ 

eiωτ G(τ) = J(ω), where the Fourier transform of the correlation function G(τ) is the 
0 

the spectral function J(ω). With some simplifications (due to statistical properties of the bath operators and to the 
fact that we only take terms resulting in an Hermitian operator), we finally arrive at the master equation: 

d
ρS(t) Jk(ωp −k , [A

p= −
LL 

)[Ap , ρS(t)]] kdt 
k p 

We can also write the master equation as the Redfield equation (subscripts indicate matrix elements): 

d L
ρa,a ′ = Raa ′ ,bb′ ρb,b′ 

dt 
b,b′ /b−b′ =a−a ′ 

8.5 Other description of open quantum system dynamics 

8.5.1 Stochastic Liouville equation and cumulants 

Stochastic Liouville theory is based on a semiclassical model of decoherence, in which the Hamiltonian at any instant 
in time consists of a deterministic and a stochastic part, which represents the effects of a random noise. In the 
simplest case of NMR T2 relaxation, this typically takes the form 

Htot(t) = Hdet(t) +Hst(t) = Hdet(t) + ω(t)HN , 
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where Hdet is the static deterministic Hamiltonian, and we separated the stochastic time dependence described by the 
coefficient ω(t) from the noise generator HN . ω(t) is a random variable due to stochastic, time-dependent fluctuating 
fields and HN is an operator which describes how these classical fields are coupled to the quantum system. 
We now introduce a superoperator L(t) defined on Liouville (operator) space via 

∗L(t) = Htot(t)⊗ 11− 11⊗Htot(t) = Ldet(t) + ω(t)LN 

where LN = H∗ ⊗ 11− 11⊗HN . This superoperator is the generator of motion for density operator ρ̂, meaningN 

t( J )
ρ(t) = U ρ̂(0) = T exp − i dt ′ L(t ′ ) ρ̂(0) 

0 

where T is the usual Dyson time ordering operator. Since what is actually observed in an experiment is the statistical
 
average over the microscopic trajectories of the system (ρ̂(t)), we have to take the ensemble average superpropagator
 
to obtain (ρ̂(t)) = 

(
U
)
ρ̂(0). The problem of calculating the average of the exponential of a stochastic operator has
 

been solved by Kubo27 using the cumulant expansion.
 

First, expand the time-ordered average exponential S = (T exp(−i 
J t 
dt ′ H(t ′ ))) via the Dyson series:
0 

(−i)2 

S = 11− i 
J t 
dt ′ (H(t ′ ))+ T 

J t 
dt1 

J t 
dt2(H(t1)H(t2))+ · · · 

0 2! 0 0 

(−i)n 

+ T 
J t 
dt1 · · · 

J t 
dtn(H(t1) · · · H(tn))+ · · · n! 0 0 

The term (H(t1) · · · H(tn)) is called the n-th moment of the distribution. We want now to express this same propagator 
in terms of the cumulant function K(t), defined by: 

K(t)S = e 

The cumulant function itself can most generally be expressed as a power series in time: 

∞
(−it)n (−it)2 

K(t) = 
L 

Kn = −itK1 + K2 + · · · 
n! 2! 

n=1 

Expanding now the exponential using the expression above we have: 

1 2 (−it)2 
S = 11 +K(t) + (K(t)) + · · · = 11− itK1 + (K2 + K1

2) + · · · 
2! 2! 

By equating terms of the same order in the two expansions we obtain the cumulants Kn in terms of the moments of 
order at most n. For example: 

t1 
J 

K1 = dt ′ 
(
H(t ′ )

)
t 0 

1 t tJ J 
= T dt1 dt2 

(
H(t1)H(t2)

) 
−K2K2 1t2 0 0 

The propagator can therefore be expressed in terms of the cumulant averages: 
(
H(t ′ )

)
= 

(
H(t ′ )

)
c (

H(t1)H(t2)
)

= T
(
H(t1)H(t2)

) 
−
(
H(t1)

)(
H(t2)

)
c 

The propagator can therefore be written as: 

t t t 

S = exp

( 

− i 
J 

dt ′
(
H(t ′ )

)
− 
J 

dt1 

J 
dt2 

(
H(t1)H(t2)

)
+ · · · 

)

c c 
0 0 0 

27 R. Kubo, Generalized Cumulant Expansion Method, Journal of the Physical Society of Japan, 17, 1100-1120 (1962) 
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J t
Note that if H is a deterministic function of time, the ensemble averages can be dropped and 

(
H(t)

)
= dt ′ H(t ′ )

c 0 
becomes the time-average Hamiltonian, which is the first term in the Magnus expansion. The second term in the 
cumulant expansion, on the other hand, becomes 

(J t 
)2 

T 
J t 
dt1 

J t1 dt2 H(t1)H(t2)− dt ′ H(t ′ )
0 0 0 

J t1 
J t 

= 2
J t 
dt1 dt2 H(t1)H(t2)−

J t 
dt1 dt2 H(t1)H(t2)0 0 0 0 

= 
J t 
dt1 

J t1 dt2 H(t1)H(t2)−
J t 
dt1 

J t 
dt2 H(t1)H(t2)0 0 0 t1 

J t J t1 = dt1 dt2 
[
H(t1), H(t2)

]
,

0 0 

where we have used the fact that the time-ordering operator T symmetrizes its argument with respect to permutation
 
of the time points. This is the second term in the Magnus expansion for the “average” (effective) Hamiltonian.
 
Proceeding in this fashion one can in principle derive average Hamiltonian theory28 from the Dyson and cumulant
 
expansions.
 
In terms of the so-called “cumulant averages” ( · · · )c, the superpropagator is given by:
 

t t t(
U
) 
= exp

(
− i 

J 
dt ′ (L(t ′ ))c − 1 T 

J 
dt1 

J 
dt2 (L(t1)L(t2))c + · · · 

)
2 

0 0 0 

Provided I
J t 
dt ′ L(t ′ )I ≪ 1 for all t > 0, we can safely neglect high order terms in the exponential’s argument. 

0 

8.5.2 Stochastic Wavefunctions 

The Monte Carlo wavefunction was derived simultaneously in the 1990s by two groups interested in very differ­
ent questions. A group of scientists in France, Dalibard, Castin, and Mølmer, wanted to simulate laser cooling of 
atoms quantum mechanically in three dimensions. Their numerical solution required discretizing space into a grid of 
40x40x40 positions; to implement the master equation on such a space would have required a density matrix with 
O(406) ∼ 109 entries such calculations are beyond the scope of even modern computers. However, simulating a 
wavefunction with O(403) entries is quite feasible. Consequently the group sought to convert the master equation to 
something more like the Schrödinger equation29 . 
At the same time, Carmichael was interested in the effects that continuous monitoring would have on a system30 . 
For example, a two-level atom prepared in an equal superposition of states can decay by emitting a photon; if that 
photon is detected, the experimenter knows with certainty that the atom is in its ground state. But what happens 
50% of the time when a photon is not detected? Certainly, after a long time has passed, the atom must be in its 
ground state, but how does that happen? To study these and similar questions, Carmichael wanted to incorporate 
the effects of continuos monitoring, and understand how a measurement can cause the system state to suddenly jump 
into a different state. 
The description on which both groups converged begins with the most general form of the master equation, 

dρ 
= −i[H, ρ] + L(ρ),

dt 

with the Lindbladian 
γk 

(L†L(ρ) = −
L 

Lkρ + ρL†Lk − 2LkρL
†).k k k2 

k 

28 See for example Haeberlen, High Resolution NMR in Solids: Selective Averaging, Academic Press Inc., New York (1976) 
29 Jean Dalibard, Yvan Castin and Klaus Mlmer Wave-function approach to dissipative processes in quantum optics, 
Phys. Rev. Lett. 68, 580583 (1992) 
30 H. J. Carmichael Quantum trajectory theory for cascaded open systems Phys. Rev. Lett. 70, 22732276 (1993) 
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Using this explicit expression and rearranging the terms we have 
  
(H− i 

L L 
+ 
L 

γkLkρL
† 
k 

dρ γk γk† †−i Lk)ρ − ρ(H +L L Lk)= k kdt 2 2 
k k k 

= −i Heffρ − ρH† + 
L 

γkLkρLeff 
† 
k, 

k 

where we have defined an effective Hamiltonian 
γkHeff = H− i 

L 
L† 
kLk2 

k 

(notice that this is not a valid Hamiltonian in the usual sense, since it is not Hermitian, so its eigenvalues are not 
the energy, since they could be imaginary numbers). 
Expanding the density matrix in terms of an ensemble of pure states, ρ = 

L
j pj |ψj ) (ψj |, we can rewrite the master 

equation in a suggestive form: 
  

dρ L 
) +

L
pj −i(Heff |ψj ) (ψj | − |ψj ) (ψj | H† 

eff γkLk |ψj ) (ψj |L† 
k= 

dt 
j k 

Now we can interpret the first two terms of this equation as a Schrödinger evolution for each of the pure states in 
the density matrix expansion: 

d |ψj ) = −iHeff |ψj )
dt 

while we interpret the last term as a quantum jump operator that changes |ψj ) into |ϕj,k) = Lk |ψj ) with some 
probability. 
We can then have a probabilistic picture of the pure state evolution. After an infinitesimal time, in the absence of 
jumps, the state will have evolved to 

|ψj (t + δt)) = (1− iHeff) |ψj ) / 1− δpj , 

where we have introduced a normalization factor, which is needed since the Hamiltonian is not hermitian: 
L 

δpj,k = δt 
L 

γk (ψj |L† 
kLk |ψj )δpj = 

k k 

If instead a jump has occurred, the state would have evolved to 
� 
γkδt |ϕj,k) = Lk |ψj )
δpj,k 

Thus the evolution of the density matrix is given by 
  

ρ(t + δt) = 
L 

pj (1− δpj ) |ψj (t + δt)) (ψj (t + δt)|+ 
L 

δpj,k |ϕj,k ) (ϕj,k|
j k 

This expression leads us to the following interpretation: the system undergoes a dynamics that yields two possible 
outcomes: 

1. with probability 1 − δpj the system evolves to the state |ψj (t + δt)), according to the operator Heff with an 
appropriate normalization 

2. with probability δpj the system jumps to another state. There are many possible states the system can jump to, 
each one with a probability δpj,k. 

This probabilistic picture is of course a coarse graining of the continuous time evolution. However, by discretizing 
time it becomes easier to devise a simulation procedure to reproduce the desired dynamics, with a wavefunction 
Montecarlo procedure. 
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