R. Parker

Problem Set 9

Problem 1.

In this problem we'll develop a general (if a bit formal) derivation of the Vlasov equation.
As we discussed in class, conservation of particles requires

$$
\frac{D(f \Delta \vec{r} \Delta \vec{v})}{D t}=0
$$

where the symbol $D / D t$ means that the time derivative is to be taken along a particle orbit in phase space. Specifically,

$$
\frac{D(f)}{D t}=\lim (\Delta t \rightarrow 0) \frac{f(\vec{r}+\vec{v} \Delta t, \vec{v}+\vec{a}(\vec{r}, \vec{v}, t) \Delta t, t+\Delta t)-f(\vec{r}, \vec{v}, t)}{\Delta t} .
$$

a) Show that the RHS of this expression reduces to

$$
\frac{\partial f}{\partial t}+\vec{v} \cdot \nabla f+\vec{a} \cdot \nabla_{v} f
$$

b) Now consider the term

$$
\frac{D(\Delta \vec{r} \Delta \vec{v})}{D t}=\lim (\Delta t \rightarrow 0) \frac{\Delta \vec{r} \Delta \vec{v}_{\vec{r}+\vec{\rightharpoonup} \Delta t, \vec{v}+\vec{a} \Delta t, t+\Delta t}-\Delta \vec{r} \Delta \vec{v}_{\vec{r}, \overrightarrow{\vec{v}}, t}}{\Delta t}
$$

As indicated, the rate of change of the phase space volume is to be calculated along a particle trajectory in phase space. For small Δt along this trajectory, the particle orbit is simply given by

$$
\begin{aligned}
& \vec{r}^{\prime}=\vec{r}+\vec{v} \Delta t \\
& \vec{v}^{\prime}=\vec{v}+\vec{a}(\vec{r}, \vec{v}, t) \Delta t
\end{aligned}
$$

These equations define a simple transformation of variables between the \vec{r}, \vec{v} and $\vec{r}^{\prime}, \vec{v}$ ' coordinates. Accordingly, a well-known mathematical result is that the volume elements are related by the Jacobian of the transformation defined as the determinant of the matrix

$$
\left[c_{i j}=\frac{\partial x_{j}^{\prime}}{\partial x_{i}}\right] .
$$

Use this result to calculate $\frac{D(\Delta \vec{r} \Delta \vec{v})}{D t}$ and complete the derivation of Vlasov's equation.

Problem 2.

In deriving the fluid energy equation in class, we got to the following point:

$$
\frac{\partial}{\partial t}\left(\frac{1}{2} m n u^{2}+\frac{3}{2} n k T\right)+\nabla \cdot\left(\frac{1}{2} m n u^{2} \vec{u}+\frac{5}{2} n k T \vec{u}+\vec{\Pi} \cdot \vec{u}\right)+\nabla \cdot \vec{q}-q \vec{E} \cdot n \vec{u}=\frac{m}{2} \int d \vec{v} v^{2} \sum_{\beta} C\left(f, f_{\beta}\right) .
$$

It was then stated that this equation could be transformed into the simpler form:

$$
\frac{3}{2} n \frac{d k T}{d t}+p \nabla \cdot \vec{u}=-\Pi_{i j} \frac{\partial u_{i}}{\partial x_{j}}-\nabla \cdot \vec{q}+Q
$$

where the summation convention applies and

$$
Q=\frac{m}{2} \int d \vec{w} w^{2} \sum_{\beta} C\left(f, f_{\beta}\right) .
$$

Show that the second form follows from the first by using the continuity equation, the result of dotting the momentum equation with \vec{u}, and the identity

$$
-\vec{u} \cdot(\nabla \cdot \vec{\Pi})+\nabla \cdot(\vec{\Pi} \cdot \vec{u})=\Pi_{i j} \frac{\partial u_{i}}{\partial x_{j}} .
$$

Problem 3.

Consider 1-D plasma oscillations proportional to $\exp (-i \omega t+i k x)$ in a hot plasma with a 1-D electron distribution function given by

$$
\tilde{f}_{e}\left(v_{x}\right)=\frac{v_{e}}{\pi} \frac{1}{v_{x}^{2}+v_{e}^{2}}
$$

For simplicity assume that k is real, but that ω could be complex.
a) Determine an algebraic dispersion relation for electron oscillations, assuming that the ions are immobile.
b) Solve the dispersion relation obtained in a) for $\omega(k)$.
c) Now assume that the ions have a distribution function given by

$$
\tilde{f}_{i}\left(v_{x}\right)=\frac{v_{i}}{\pi} \frac{1}{v_{x}^{2}+v_{i}^{2}}
$$

while the electron distribution function is the same as in part a). Assuming $\omega / k \ll v_{e}$, determine $\omega(k)$ for ion acoustic waves.

Possibly useful integrals:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{v_{x}}{\left(v_{x}^{2}+v_{e}^{2}\right)^{2}} \frac{1}{v_{x}-\varsigma} d v_{x}=-\frac{\pi}{2 v_{e}}\left\{\frac{\left(\varsigma-i v_{e}\right)^{2}}{\left(\varsigma^{2}+v_{e}^{2}\right)^{2}}\right\} \quad \operatorname{Im} \varsigma>0 \\
& \int_{-\infty}^{\infty} \frac{v_{x}}{\left(v_{x}^{2}+v_{e}^{2}\right)^{2}} \frac{1}{v_{x}-\varsigma} d v_{x}=-\frac{\pi}{2 v_{e}}\left\{\frac{\left(\varsigma+i v_{e}\right)^{2}}{\left(\varsigma^{2}+v_{e}^{2}\right)^{2}}\right\} \quad \operatorname{Im} \varsigma<0 \\
& \int_{-\infty}^{\infty} \frac{v_{x}}{\left(v_{x}^{2}+v_{e}^{2}\right)} \frac{1}{v_{x}-\varsigma} d v_{x}=\pi\left\{\frac{\left(v_{e}+i \varsigma\right)}{\left(v_{e}^{2}+\varsigma^{2}\right)}\right\} \quad \operatorname{Im} \varsigma>0 \\
& \int_{-\infty}^{\infty} \frac{v_{x}}{\left(v_{x}^{2}+v_{e}^{2}\right)} \frac{1}{v_{x}-\varsigma} d v_{x}=\pi\left\{\frac{\left(v_{e}-i \varsigma\right)}{\left(v_{e}^{2}+\varsigma^{2}\right)}\right\} \quad \operatorname{Im} \varsigma<0 \\
& \int_{-\infty}^{\infty} \frac{v_{x}^{2}}{\left(v_{x}^{2}+v_{e}^{2}\right)^{2}} \frac{1}{v_{x}-\varsigma} d v_{x}=-\frac{\pi}{2 v_{e}} \varsigma\left\{\frac{\left(\varsigma-i v_{e}\right)^{2}}{\left(\varsigma^{2}+v_{e}^{2}\right)^{2}}\right\} \quad \operatorname{Im} \varsigma>0 \\
& \int_{-\infty}^{\infty} \frac{v_{x}^{2}}{\left(v_{x}^{2}+v_{e}^{2}\right)^{2}} \frac{1}{v_{x}-\varsigma} d v_{x}=-\frac{\pi}{2 v_{e}} \varsigma\left\{\frac{\left(\varsigma+i v_{e}\right)^{2}}{\left(\varsigma^{2}+v_{e}^{2}\right)^{2}}\right\} \quad \operatorname{Im} \varsigma<0
\end{aligned}
$$

