
Chapter 3 

Collisions in Plasmas 

3.1 Binary collisions between charged particles 

Reduced-mass for binary collisions: 

Two particles interacting with each other have forces 

F12 force on 1 from 2. 

FZ1 force on 2 from 1. 

By Newton's 3rd law, F12 = F Z 1 .  

Equations of motion: 
mlrl  = F12 ; m2r2 = FZ1 

Combine to get 

rl - r2 = F12 (3.2) 

which may be written 
mlm2 d2 

ml + (3.3) m2 - ('1 - r 2 )  = dt2 F12 

If F l 2  depends only on the difference vector rl - r2, then this equation is identical to the 
equation of a particle of "Reduced Mass" m, = moving a t  position r = rl - r2 with 
respect to a fixed center of force: 

m,r = F12(r) . (3.4) 

This is the equation we analyse, but actually particle 2 does move. And we need to recognize 
that when interpreting mathematics. 

If FZ1 and rl - r2 are always parallel, then a general form of the trajectory can be written 
as an integral. To save time we specialize immediately to the Coulomb force 

Solution of this standard (Newton's) problem: 
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Figure 3.1: Geometry of the collision orbit 

Angular momentum is conserved: 

m,r28 = const. = m,bvl (0 clockwise from symmetry) 

Substitute u = ; 1 then 8 = 3 = u2 bv, 

Also 

Then radial acceleration is 

This orbit equation has the elementary solution 

The sin0 term is absent by symmetry. The other constant of integration, C, must be deter- 
mined by initial condition. At initial (far distant) angle, 01, u l  oo 1 = = 0. So 

There: 

Hence 
sin O1 1 / C b  b 

t a n &  = -= -- 

cosO1 
-- 

V'42- / C  bgo 
4neo rn,(b~~)~ 



Notice that tan81 = 1 when b  = b g ~ .  This is when O1 = -45" and x = 90". So particle 
emerges at 90" to initial direction when 

b  = bgO "90" impact parameter" (3.16) 

Finally: 

3.1.1 Frames of Reference 

Key quantity we want is the scattering angle but we need to be careful about reference 
frames. 

Most "natural" frame of ref is "Center-of-Mass" frame, in which C of M is stationary. C of 
M has position: 

and velocitv (in lab frame) 

Now 

So motion of either particle in C of M frame is a factor times difference vector, r. 

Velocity in lab frame is obtained by adding V to the C of M velocity, e.g. + V  
Angles of position vectors and velocity dzfferences are same in all frames. 

Angles (i.e. directions) of velocities are n o t  same.  

3.1.2 Scattering Angle 

In C of M frame is just the final angle of r. 

- 201 -+ x = r 

(81 is negative) 



Figure 3.2: Relation between O1 and x 
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But scattering angle (defined as exit velocity angle relative to initial velocity) in lab frame 
is different. 

Final velocity in CM frame 

vLM = V ~ C M  (COS x,, sin xc) m2 
= vl (cos X C ,  sin x,) (3.27) 

ml+ m2 

[ xC -- x and vl is initial relative velocity]. Final velocity in Lab frame 

So angle is given by 

v + G G  "732211 cos Xc V ml+m2 
cot XL = - 

7n2211. cosecx, + (3.29) cot X, 
m1tm2 

sin xz ~1 m2 

For the specific case when m2 is initially a stationary target in lab frame, then 

v m1v1 
= and hence 

ml+ m2 
ml cot XL = c o s e c x ,  + cot X, 
m2 

This is exact. 

Small angle approximation (cot x i i, cosecx i 1 gives 
X X 

So small angles are proportional, with ratio set by the mass-ratio of particles 
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Figure 3.3: Collisions viewed in Center of Mass and Laboratory frame 

3.2 Differential Cross-Section for Scattering by Angle 

Rutherford Cross-Section 

By definition the cross-section, 0, for any specified collision process when a particle is passing 
through a density n2  of targets is such that the number of such collisions per unit path length 
is n20. 

Sometimes a continuum of types of collision is considered, e.g. we consider collisions at 
different angles (x) to be distinct. In that case we usually discuss differential cross-sections 
(e.g $) defined such that  number of collisions in an (angle) element dx  per unit path length 

is n2$dx. [Note that  4~ is just notation for a number. Some authors just write ~ ( x ) ,  but I 
dx 

find that less clear.] 

Normally, for scattering-angle discrimination we discuss the differential cross-section per unit 
solid angle: 

dff 
- 

dfls 

This is related to scattering angle integrated over all azimuthal directions of scattering by: 



Figure 3.4: Scattering angle and solid angle relationship. 

dCl, = 2.rrsinxdx 

So that since 

we have 

Now, since x is a function (only) of the impact parameter, b, we just have to determine the 
number of collisions per unit length a t  impact parameter b. 
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Figure 3.5: Annular volume corresponding to db. 

Think of the projectile as dragging along an annulus of radius b and thickness db for an 
elementary distance along its path, d!. It thereby drags through a volume: 

Therefore in this distance it has encountered a total number of targets 

d!2.rrbdb . n2 



at impact parameter b(db). By definition this is equal to d!$dbn2. Hence the differential 
cross-section for scattering (encounter) at impact parameter b is 

Again by definition, since x is a function of b 

[dbldx is negative but different,ial cross-sect,ions are posit,ive.] 

Substitute and we get 

[This is a general result for classical collisions.] 

For Coulomb collisions, in C of M frame, 

b 
cot (:I - = - 

b90 

+ db ,d X 
= b b90 

90 c o t  2x 
- = -- cosec - . 

dx  dx  2 2 2 
Hence 

dff b90 cot $ b90 2x 
- - cosec 
dfl, s inx  2 

- 

2 

- 
bgo cos $/sin 5 1 

2 2sin $ cos $ sin2 5 

This is the Rutherford Cross-Section. 

for scattering by Coulomb forces through an angle x measured in C of M frame 

Notice that & i i as x i 0. 

This is because of the long-range nature of the Coulomb force. Distant collisions tend to 
dominate. (X i 0 H b i a). 



3.3 Relaxation Processes 

There are 2 (main) different types of collisional relaxation process we need to discuss for a 
test particle moving through a background of scatterers: 

1. Energy Loss (or equilibrium) 

2. Momentum Loss (or angular scattering) 

The distinction may be illustrated by a large angle (90") scatter from a heavy (stationary) 
target 

If the target is fixed, no energy is transferred to it. So the energy loss is zero (or small if 
scatterer is just 'heavy'). However, the m o m e n t u m  in the x direction is completely ' lost '  in 
this 90" scatter. 

This shows that the timescales for Energy loss and momentum loss may be very different. 

3.3.1 Energy Loss 

For an initially stationary target, the final velocity in lab frame of the projectile is 

So the final kinetic energy is 

1 2mlm2 
= -m1v; {1+ 2 sin 

2 (m1+ m2) 
- 

Hence the kinetic energy lost is AK = K - Kt  

1 4mlm2 2 X C  
= m1V2 sin - (3.53) 

2 (m1+ m2) 2 

1 4mlm2 1 xc b 
= m 1 v 1  [using cot - = -1 (3.54) 

2 ( m l +  m2)2 (&)) + 1 2 b90 

(exact). For small angles x << 1 i.e. blbgo >> 1 this energy lost in a single collision is 
approximately 



If what we are asking is: how fast does the projectile lose energy? Then we need add up the 
effects of all collisions in an elemental length d! a t  all relevant impact parameters. 

The contribution from impact parameter range db at  b will equal the number of targets 
encountered times AK: 

- 
1 4m1m2 n2d!2rbdb m l v 1  2 

2 
(F)'  

(ml+ m2)' encounters .- 
Loss per encounter ( A K )  

This must be integrated over all b to  get total energy loss 

dK m1m2 - = K n 2  8nb;, [In b]:: 
d! (m1 + m2I2 

We see there is a problem both limits of the integral (b  i 0, b i oo) diverge logarithmically. 
That  is because the formulas we are integrating are approximate. 

1. We are using small-angle approx for AK. 

2. We are assuming the Coulomb force applies but this is a plasma so there is screening. 

3.3.2 Cut-offs Estimates 

1. Small-angle approx breaks down around b = bgO. Just truncate the integral there; 
ignore contributions from b < bgO. 

2 .  Debye Shielding says really the potential varies as 

""P (2) 1 
4~ instead of r K - r 

so approximate this by cutting off integral a t  b = AD equivalent to 

b,, = b 90. b ,  = AD 



So Coulomb Logarithm is '1nA' 

Because these cut-offs are in in term result is not sensitive to  their exact values. 

One commonly uses Collision Frequency. Energy Loss Collision Frequency is 

Substitute for bgO and m, (in bgO) 

Collision time TK TK 1/uK 

Effective (Energy Loss) Cross-section [+% = ffKn2] 

3.3.3 Momentum Loss 

Loss of x-momentum in 1 collision is 

(small angle approx). Hence rate of momentum loss can be obtained using an integral 
identical to  the energy loss but with the above parameters: 

Note for the future reference: 



Therefore Momentum Loss 

Collision Frequency 

Collision Time T, = l /vp 

Cross-Section (effective) 0 = vp/n2vl 

Notice ratio 
Energy Loss v~ m l +  m2 2ml 

(3.78) 

This is 

Third case, e.g. electrons i shows that mostly the angle of velocity scatters. Therefore 
Momentum 'Scattering' time is often called '90" scattering' time to 'diffuse' through 90" in 
angle. 

3.3.4 'Random Walk' in angle 

When ml  << m2 energy loss << momentum loss. Hence v i  -. vl. All that matters is the 
scattering angle: X L  -. X ,  -. 2bso/b. 

Mean angle of deviation in length L is zero because all directions are equally likely. 
But: 
Mean square angle is 

Spread is 'all round' when Act2 -. 1. This is roughly when a particle has scattered 90" on 
average. It requires 

Ln2 8.rrb;, in A = 1 . (3 34)  



So can think of a kind of 'cross-section' for 'ugO' 90" scattering as such that 

n2L'ogo' = 1 when Ln2 8~ b:, 1nA = 1 (3.85) 

i.e. 'ffgo' = 8~ b:, 1nA (= 2oP) (3.86) 

This is 8 in,\ larger than cross-section for 90" scattering i n  single collision. 

Be Careful! 'gg0' is not a usual type of cross-section because the whole process is really 
diffusive in angle. 

Actually all collisio~l processes due t,o coulomb force are best treated (in a Mathematical 
way) as a diffusion in velocity space 

i Fokker-Plmck equation. 

3.3.5 Summary of different types of collision 

The Energy Loss collision frequency is to do with slowing down to rest and exchanging 
energy. It is required for calculating 

Equilibration Times (of Temperatures) 
Energy Transfer between species. 

The Momentum Loss frequency is to do with loss of directed velocity. It is required for 
calculating 

Mobility: Conductivity/Resistivity 
Viscosity 
Particle Diffusion 
Energy (Thermal) Diffusion 

Usually we distinguish between electrons and ions because of their very different mass: 
Energy Loss [Stationary Targets] Momentum Loss 

Sometimes one distinguishes between 'transverse diffusion' of velocity and 'momentum loss'. 
The ratio of these two is 



= 1 like particles 

Hence 

1 v.. = P v . . -  
Z Z  - Kvii (= vii!!) (Like Ions) 

[But note: ions are slowed down by electrons long before being angle scattered.] 

3.4 Thermal Distribution Collisions 

So far we have calculated collision frequencies with stationary targets and single-velocity 
projectiles but generally we shall care about thermal (Maxwellian) distributions (or nearly 
thermal) of both species. This is harder to calculate and we shall resort to some heuristic 
calculations. 

Very rare for thermal ion velocity to be - electron. So ignore ion motion. 

Average over electron distribution. 

Momentum loss to ions from (assumed) drifting Maxwellian electron distribution: 

Each electron in this distribution is losing momentum to the ions at a rate given by the 
collision frequency 

424: 4~ (me vp = ni + mi) In A (3.98) 
( 4 7 ~ ~ ) ~  mimzv3 

so total rate of loss of momentum is given by (per unit volume) 

To evaluate this integral approximately we adopt the following simplifications 



1. Ignore variations of 1nA with v and just replace a typical thermal value in A = 

X D / ~ S O ( ~ I ) .  

2. Suppose 

r 
that drift velocity vd is small relative 

' 
to the typical thermal velocity, written 

v, = t,/m, and express f, in terms of u = to first order in ud = -: 
Zle Zle 

taking x-axis along ud and denoting by f, the unshifted Maxwellian 

Then momentum loss rate per unit volume 

To evaluate this integral, use the spherical symmetry off ,  to see that:  

Thus the Maxwell-averaged momentum-loss frequency is 

(where p = m,vdn, is the momentum per unit volume attributable to drift) 

(substituting for thermal electron velocity, v,, and dropping order term), where Ze = qi.  

This is the standard form of electron collision frequency. 



Ion momentum loss to electrons can be treated by a simple Galilean transformation of the 
e i i case because it is still the electron thermal motions that  matter. 

Ions + Electrons Ions + Electrons 

Figure 3.6: Ion-electron collisions are equivalent to electron-ion collisions in a moving refer- 
ence frame. 

Rate of momentum transfer, 2,  is same in both cases: 

(since drift velocities are the same). 

Ion momentum loss to electrons is much lower collision frequency than e i i because ions 
possess so much more momentum for the same velocity. 

Ion-ion collisions can be treated somewhat like e i i collisions except that we have to 
account for moving targets i.e. their thermal motion. 

Consider two different ion species moving relative to each other with drift velocity vd; the 
targets' thermal motion affects the momentum transfer cross-section. 

Using our previous expression for momentum transfer, we can write the average rate of 
transfer per unit volume as: [see 3.74 "note for future reference"] 

where v, is the relative velocity (vl - v2) and bgO is expressed 



and m, is the reduced mass 
m1tm2 

Since everything in the integral apart from f 1 f 2  depends only on the relative velocity, we 
proceed by transforming the velocity coordinates from v l , v2  to being expressed in terms of 
relative (v,) and average ( V  say) 

Take f l  and f 2  to be shifted Maxwellians in the overall C of M frame: 

where mlvdl + m2Vd2 = 0. Then 

to first order in vd. Convert CM coordinates and find (after algebra) 

where M = ml + m2. Note also that (it can be shown) d3vld3v2 = d3v,d3V. Hence 

vrm,v,47r b:, in Anln2 
dt 

M V ~  mrv,2 m, 
exp exp (1 + T ~ d . ~ r )  d3v.d3v (3.115) 

and since 

* 
nothing except the exponential depends 

' (-1 
on V ,  that integral can be done: 

- -m,v,2 m, 
dt = / v r  mrvr47r 1nA nln2 (-) m, 

27rT exp 27r (1 + ,vd.vr) d3vr (3.116) 

This integral is of just the same type as for e - i collisions, i.e 



where vrt = E, bgO(vrt) is the ninety degree impact parameter evaluated at velocity vt,, 

and fo  is the normalized Maxwellian. 

This is the general result for momentum exchange rate between two Maxwellians drifting at 
small relative velocity vd. 

To get a collision frequency is a matter of deciding which species is stationary and so what the 
momentum density of the moving species is. Suppose we regard 2 as targets then momentum 
density is nlmlvd so 

This expression works immediately for electron-ion collisions substituting m, -. me, recov- 
ering previous. 

For equal-mass ions m, mi  1 = - = ,mi and vrt = 
m i t m i  my = p. mi 

Substituting, we get 
1 47r v.. 7%- - - ni (z) 7 l n h  (3.120) 

37rZ m? Ti" 

that is, 5 times the e - i expression but with ion parameters substituted. [Note, however, 
that we have considered the ion species to be different.] 

Electron-electron collisions are covered by the same formalism, so 

However, the physical case under discussion is not so obvious; since electrons are indistigu- 
ishable how do we define two different "drifting maxwellian" electron populations? A more 
specific discussion 

- 
would be needed to make this rigorous. 

Generally v,, veil& : electron-electron collision frequency - electron-ion (for momentum 
loss) 

3.4.5 Summary of Thermal Collision Frequencies 

For momentum loss: 



- v,, " 1 - 
- vei . (electron parameters) (3.123) 
2/2 

Energy loss Kv related to the above (pv) by 

Transverse 'dzffuszon' of momentum 'v, related to the above by: 

3.5 Applications of Collision Analysis 

3.5.1 Energetic ('Runaway') Electrons 

Consider an energetic (;met$ >> T) electron travelling through a plasma. It is slowed down 
(loses momentum) by collisions with electrons and ions (Z) ,  with collision frequency: 

Hence (in the absence of other forces) 

This is equivalent to saying that the electron experiences an effective 'Frictional' force 



Notice 

1. for Z = 1 slowing down is on electrons ions 

2. Ff decreases with v increasing. 

Suppose now there is an electric field, E. The electron experiences an accelerating Force 

Total force 

d  e4 8.rrln.h 
F=- (  mv) = e E  + Ff = e E  - (3.134) 

d t  

Two Cases (When E is accelerating) 

1. e E  < I F f :  Electron Slows Down 

2. e E  > I F f :  Electron Speeds Up! 

Once the electron energy exceeds a certain value its velocity increases continuously and the 
friction force becomes less and less effective. The electron is then said to ahve become a 
'runaway '. 

3.5.2 Plasma Resistivity (DC) 

Consider a bulk distribution of electrons in an electric field. They tend to be accelerated by 
E and decelerated by collisions. 

In this case, considering the electrons as a whole, no loss of total electron momentum by 
e - e collisions. Hence the friction force we need is just that due to Gi. 

If the electrons have a mean drift velocity vd(<< vthe) then 

Hence in steadv state 

The current is then 
n,e2E 

1 = -n,evd = (3.138) 
mevei 

Now generally, for a conducting medium we define the conductivity, 0 ,  or resistivity, 7 ,  by 



Therefore, for a plasma, 
1 nee2 

g = = -  

7 meGi 
Substitute the value of vei and we get 

1 

- 
Ze2m2 8~ in A 

- (for a single ion species). 
( ~ T C , ) ~  3 6  T2 

Notice 

1. Density cancels out because more electrons means (a) more carriers but (b) more 
collisions. 

2. Main dependence is 7 K T;~/~.  High electron temperature implies low resistivity (high 
conductivity). 

3. This expression is only approximate because the current tends to be carried by the 
more energetic electrons, which have smaller vei; thus if we had done a proper average 
over f (v,) we expect a lower numerical value. Detailed calculations give 

for Z = 1 (vs. -. in our expression). This is 'Spitzer' resistivity. The detailed 
calculation value is roughly a factor of two smaller than our calculation, which is not 
a negligible correction! 

3.5.3 Diffusion 

For motion parallel to a magnetic field if we take a typical electron, with velocity v -. vt, it 
will travel a distance approximately 

before being pitch-angle scattered enough to have its velocity randomised. [This is an order- 
of-magnitude calculation so we ignore u,,.] ! is the mean free path. 

Roughly speaking, any electron does a random walk along the field with step size ! and step 
frequency vei. Thus the diffusion coefficient of this process is 

Similarly for ions 



(if T, 2 Ti) 
Ute  

Hence !, 2 ti 
Mean free paths for electrons and ions are - same. 

The diffusion coefficients are in the ratio 

Di 
1 

: Ions diffuse slower in parallel direction. (3.148) 

Diffusion Perpendicular  to Mag. Field is different 

Figure 3.7: Cross-field diffusion by collisions causing a jump in the gyrocenter (GC) position. 

Roughly speaking, if electron direction is changed by - - 90" the Guiding Centre - moves by 
a distance r ~ .  Hence we may think of this as a random walk with step size r~ and 
frequency vei. Hence 

2 

Del Ute  - 
2 rZevei 2 (3.149) 

Ion transport is similar but requires a discussion of the effects of like and unlike collisions. 

Particle transport occurs only via unlike collisions. To show this we consider in more detail 
the change in guiding center position at a collision. Recall m v  = qv A B which leads to 

4 vl  = r~ A B (perp. velocity only). (3.150) 
m 

This gives 
B A m v l  

r~ = (3.151) 
4B2 

At a collision the particle position does not change (instantaneously) but the guiding center 
position (ro) does. 



Change in r~ is due to the momentum change caused by the collision: 

The total momentum conservation means that A(mv)  for the two particles colliding is equal 
and opposite. Hence, from our equation, for like particles, A r o  is equal and opposite. The 
mean position of guiding centers of two colliding like particles (rol + rO2)/2 does not change. 

No net cross field particle (guiding center) shift. 

Unlike collisions (between particles of different charge q) do produce net transport of particles 
of either type. And indeed may move rol and ro2 in same direction if they have opposite 
charge. 

2 

Dil 2 -  ' ti- 
rr rLi Pvie ̂ . (3.155) 

Notice that ri,/ri, -. mi/me ; Wie/vei ̂ . % 
mi 

So Dil/De1 -. 1 (for equal temperatures). Collisional diffusion rates of particles are same 
for ions and electrons. 

However energy transport is different because it can occur by like-like collisins 

Thermal Diffusivity: 

1 

rii ~ i i  mi m2 
xiIxe - 2 -  - ̂. - = (3 ' (equal T) 

r~~ Vei me ,? 

Collisional Thermal transport by Ions is greater than by electrons [factor - (milme)' ] 

3.5.4 Energy Equilibration 

If T, # Ti then there is an exchange of enegy between electrons and ions tending to make 
T, =Ti. As we saw earlier 

K,, me 1 
ez - 2me pYei = - vei (3.159) 

mi mi 
So applying this to averages 



Thermal energy exchange occurs - m,/mi slower than momentum exchange. (Allows T, # 
. So 

From this one can obtain the heat exchange rate (per unit volume), Hei, say: 

Important point: 

'Electrons and Ions equilibrate among themselves much faster than with each other' 

3.6 Some Orders of Magnitude 

1. 1nA is very slowly varying. Typically has value - 12 to 16 for laboratory plasmas 

2. vei -- 6 x 10-"(ni/m3) / (T,/~V); (1nA = 15, Z = 1). 
e.g. = 2 x 105s-' (when n = 1020m-3 and T, = IkeV.) For phenomena which happen 
much faster than this, i.e. T << l/vei - 5ps, collisions can be ignored. 
Examples: Electromagnetic Waves with high frequency. 

3. Resistivity. Because most of the energy of a current carrying plasma is in the B field 
not the K.E. of electrons. Resistive decay of current can be much slower than vei. E.g. 
Coaxial Plasma: (Unit length) 

Inductance L b 
= p, in a 

Resistance R = 7 l/.rra2 
L/R decay time 

Comparison 1 keV temperature plasma has - same (conductivity/) resistivity as a slab 
of copper (- 2 x 10-8flm). 

Ohmic Heating Because 7 K T;~/', if we try to heat a plasma Ohmically, i.e. by simply 
passing a current through it, this works well at low temperatures but its effectiveness falls 
off rapidly a t  high temperature. 



Result for most Fusion schemes it looks as if Ohmic heating does not quite yet get us to the 
required ignition temperature. We need auxilliary heating, e.g. Neutral Beams. (These slow 
down by collisions.) 


