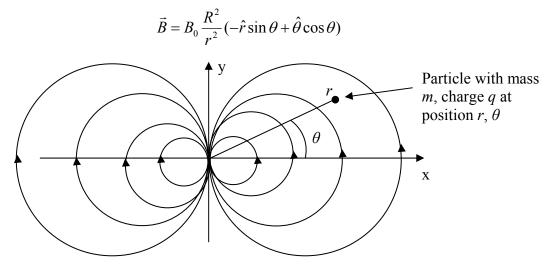
R. Parker 1.5 Hours

Mid-Term Quiz

Note: Closed book, one 8.5"x11" sheet of notes is permitted.

Problem 1. (35%)

The figure below shows a charged particle moving in a 2-dimensional dipole magnetic field. The particle's mass is m and its charge is q. The field is given by



where *R* and B_0 are constants and r, θ are the usual cylindrical coordinates. The field is independent of the *z*-coordinate. Hint: The field lines for this 2-D dipole are circular and are given by $r \alpha \cos\theta$.

- a) At $\theta = 0$, the particle is located at r_0 , its perpendicular energy is $W_{\perp 0}$ and its total energy is W_0 . Determine the particle's maximum angular displacement θ_{max} (measured from the x-axis.)
- b) Determine the particle's drift velocity as a function *only* of its θ -coordinate and other fixed parameters.

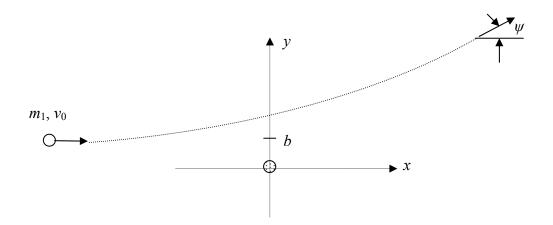
c) The particle's equation of motion parallel to the field has the form $\frac{d^2\theta}{dt^2} = f(\theta)$ where $f(\theta)$ is a function of θ and the other fixed parameters of the problem, but not of *r*. Determine $f(\theta)$.

Note: In cylindrical coordinates:

$$\nabla \times \vec{A} = \hat{r} \left(\frac{\partial A_z}{r \partial \theta} - \frac{\partial A_{\theta}}{\partial z} \right) + \hat{\theta} \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) + \hat{z} \left(\frac{\partial A_{\theta}}{\partial r} + \frac{A_{\theta}}{r} - \frac{\partial A_r}{r \partial \theta} \right), \quad \nabla \phi = \hat{r} \frac{\partial \phi}{\partial r} + \hat{\theta} \frac{\partial \phi}{r \partial \theta} + \hat{z} \frac{\partial \phi}{\partial z}$$

Problem 2. (35%)

The figure below illustrates a collision between two particles. In the case shown, the shaded particle



has infinite mass and is therefore stationary during the collision. The moving particle has mass m_1 , speed v_0 and the impact parameter for the collision is b.

The force between the two particles is k/r^3 where k is a constant and r is the distance of separation. The force is repulsive and acts along a line connecting the particles.

a) Determine the distance of closest approach, r_{\min} , i.e., the minimum distance between the particles during the collision event.

b) Calculate the angular deflection ψ of the incident particle and the impact parameter, b_{90} , for a 90° collision. One of the integrals on the next page should be useful to you in answering this part.

Assume now that the particle at the origin has finite mass m_2 and is stationary before the collision.

c) Calculate, in terms of ψ , the loss in x-directed momentum suffered by particle 1 as a result of the collision.

d) Consider now a beam of particles with mass m_1 and velocity $\hat{x}v_x$ injected into a "sea" of initially stationary particles with mass m_2 . (The force of interaction continues to be k/r^3 .) The initial rate of momentum loss of the beam particles is $v_p m_1 v_x$ where

$$v_p = n_2 \sigma_p v_x$$
.

and n_2 is the density of particles with mass m_2 . The cross-section σ_p is determined by an integral of the form

$$\sigma_p = \int_0^\infty f(b) db$$

Determine f(b).

Integrals:

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left(x + \sqrt{x^2 - a^2}\right)$$

$$\int \frac{xdx}{\sqrt{x^2 - a^2}} = \sqrt{x^2 - a^2}$$

$$\int \frac{x^2dx}{\sqrt{x^2 - a^2}} = \frac{x\sqrt{x^2 - a^2}}{2} + \frac{a^2}{2}\ln(x + \sqrt{x^2 - a^2})$$

$$\int \frac{x^3dx}{\sqrt{x^2 - a^2}} = \frac{(x^2 - a^2)^{3/2}}{3} + a^2\sqrt{x^2 - a^2}$$

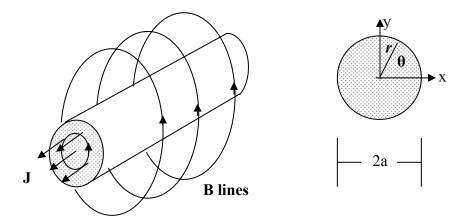
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\cos^{-1}\left|\frac{a}{x}\right|$$

$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{a^2x}$$

$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{a^2x^2} + \frac{1}{2a^3}\sec^{-1}\left|\frac{x}{a}\right|$$

Problem 3. (30%)

The figure below depicts a long z-pinch with magnetic field $\vec{B} = \hat{\theta}B(r)$ and pressure p(r). The pinch has a circular cross-section radius and the pressure vanishes at the radius a. The mass density ρ is constant, $\rho = \rho_0$. Assume in this problem that the usual MHD equation of state $p\rho^{-\gamma}$ =const is not valid for the equilibrium, and that the pressure can be determined independent of the density.



a) The plasma is undergoing rigid-body rotation in the θ -direction, i.e., the plasma velocity is $\vec{V} = \hat{\theta} r \Omega$ where Ω is a constant. What is the relationship among B(r), p(r) and Ω necessary to assure MHD equilibrium?

b) The current density in the z-pinch is constant, i.e., $\vec{J} = \hat{z}J_0$ where J_0 is a constant. Solve the equation found in part a) to determine p(r) assuming that p(a) = 0 where *a* is the outer radius of the z-pinch.

c) Determine the β of the plasma define as $\beta = \frac{\left(\frac{2}{a^2}\int_{0}^{a} p(r)rdr\right)}{\frac{B_{\theta}^2(a)}{2\mu_0}}$.

Possibly useful formula:

$$\vec{a} \bullet \nabla \vec{b} = \hat{r} \left(a_r \frac{\partial b_r}{\partial r} + \frac{a_{\theta}}{r} \frac{\partial b_r}{\partial \theta} + a_z \frac{\partial b_r}{\partial z} - \frac{a_{\theta} b_{\theta}}{r} \right) + \hat{\theta} \left(a_r \frac{\partial b_{\theta}}{\partial r} + \frac{a_{\theta}}{r} \frac{\partial b_{\theta}}{\partial \theta} + a_z \frac{\partial b_{\theta}}{\partial z} + \frac{a_{\theta} b_r}{r} \right) \\ + \hat{z} \left(a_r \frac{\partial b_z}{\partial r} + \frac{a_{\theta}}{r} \frac{\partial b_z}{\partial \theta} + a_z \frac{\partial b_z}{\partial z} \right)$$