Mid-Term Quiz
Note: Closed book, one 8.5 "x11" sheet of notes is permitted.

Problem 1. (35\%)

The figure below shows a charged particle moving in a 2 -dimensional dipole magnetic field. The particle's mass is m and its charge is q. The field is given by

$$
\vec{B}=B_{0} \frac{R^{2}}{r^{2}}(-\hat{r} \sin \theta+\hat{\theta} \cos \theta)
$$

where R and B_{0} are constants and r, θ are the usual cylindrical coordinates. The field is independent of the z-coordinate. Hint: The field lines for this 2-D dipole are circular and are given by $\boldsymbol{r} \alpha \cos \boldsymbol{\theta}$.
a) At $\theta=0$, the particle is located at r_{0}, its perpendicular energy is $W_{\perp 0}$ and its total energy is W_{0}.

Determine the particle's maximum angular displacement $\theta_{\max }$ (measured from the x-axis.)
b) Determine the particle's drift velocity as a function only of its θ-coordinate and other fixed parameters.
c) The particle's equation of motion parallel to the field has the form $\frac{d^{2} \theta}{d t^{2}}=f(\theta)$ where $f(\theta)$ is a function of θ and the other fixed parameters of the problem, but not of r. Determine $f(\theta)$.

Note: In cylindrical coordinates:

$$
\nabla \times \vec{A}=\hat{r}\left(\frac{\partial A_{z}}{r \partial \theta}-\frac{\partial A_{\theta}}{\partial z}\right)+\hat{\theta}\left(\frac{\partial A_{r}}{\partial z}-\frac{\partial A_{z}}{\partial r}\right)+\hat{z}\left(\frac{\partial A_{\theta}}{\partial r}+\frac{A_{\theta}}{r}-\frac{\partial A_{r}}{r \partial \theta}\right), \quad \nabla \phi=\hat{r} \frac{\partial \phi}{\partial r}+\hat{\theta} \frac{\partial \phi}{r \partial \theta}+\hat{z} \frac{\partial \phi}{\partial z}
$$

Problem 2. (35\%)
The figure below illustrates a collision between two particles. In the case shown, the shaded particle

has infinite mass and is therefore stationary during the collision. The moving particle has mass m_{1}, speed v_{0} and the impact parameter for the collision is b .

The force between the two particles is $\boldsymbol{k} / \boldsymbol{r}^{\mathbf{3}}$ where k is a constant and r is the distance of separation. The force is repulsive and acts along a line connecting the particles.
a) Determine the distance of closest approach, $r_{\text {min }}$, i.e., the minimum distance between the particles during the collision event.
b) Calculate the angular deflection ψ of the incident particle and the impact parameter, b_{90}, for a 90° collision. One of the integrals on the next page should be useful to you in answering this part.

Assume now that the particle at the origin has finite mass m_{2} and is stationary before the collision.
c) Calculate, in terms of ψ, the loss in x-directed momentum suffered by particle 1 as a result of the collision.
d) Consider now a beam of particles with mass m_{1} and velocity $\hat{x} v_{x}$ injected into a "sea" of initially stationary particles with mass m_{2}. (The force of interaction continues to be k / r^{3}.) The initial rate of momentum loss of the beam particles is $v_{p} m_{1} v_{x}$ where

$$
v_{p}=n_{2} \sigma_{p} v_{x} .
$$

and n_{2} is the density of particles with mass $m_{2} .$. The cross-section σ_{p} is determined by an integral of the form

$$
\sigma_{p}=\int_{0}^{\infty} f(b) d b
$$

Determine $f(b)$.

Integrals:

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\ln \left(x+\sqrt{x^{2}-a^{2}}\right) \\
& \int \frac{x d x}{\sqrt{x^{2}-a^{2}}}=\sqrt{x^{2}-a^{2}} \\
& \int \frac{x^{2} d x}{\sqrt{x^{2}-a^{2}}}=\frac{x \sqrt{x^{2}-a^{2}}}{2}+\frac{a^{2}}{2} \ln \left(x+\sqrt{x^{2}-a^{2}}\right) \\
& \int \frac{x^{3} d x}{\sqrt{x^{2}-a^{2}}}=\frac{\left(x^{2}-a^{2}\right)^{3 / 2}}{3}+a^{2} \sqrt{x^{2}-a^{2}} \\
& \int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \cos ^{-1}\left|\frac{a}{x}\right| \\
& \int \frac{d x}{x^{2} \sqrt{x^{2}-a^{2}}}=\frac{\sqrt{x^{2}-a^{2}}}{a^{2} x} \\
& \int \frac{d x}{x^{3} \sqrt{x^{2}-a^{2}}}=\frac{\sqrt{x^{2}-a^{2}}}{2 a^{2} x^{2}}+\frac{1}{2 a^{3}} \sec ^{-1}\left|\frac{x}{a}\right|
\end{aligned}
$$

Problem 3. (30\%)

The figure below depicts a long z-pinch with magnetic field $\vec{B}=\hat{\theta} B(r)$ and pressure $p(r)$. The pinch has a circular cross-section radius and the pressure vanishes at the radius \boldsymbol{a}. The mass density ρ is constant, $\rho=$ ρ_{0}. Assume in this problem that the usual MHD equation of state $p \rho^{-\gamma}=$ const is not valid for the equilibrium, and that the pressure can be determined independent of the density.

a) The plasma is undergoing rigid-body rotation in the θ-direction, i.e., the plasma velocity is $\vec{V}=\hat{\theta} r \Omega$ where Ω is a constant. What is the relationship among $B(r), p(r)$ and Ω necessary to assure MHD equilibrium?
b) The current density in the z-pinch is constant, i.e., $\vec{J}=\hat{z} J_{0}$ where J_{0} is a constant. Solve the equation found in part a) to determine $p(r)$ assuming that $p(a)=0$ where \boldsymbol{a} is the outer radius of the z-pinch.
c) Determine the β of the plasma define as $\beta=\frac{\left(\frac{2}{a^{2}} \int_{0}^{a} p(r) r d r\right)}{\frac{B_{\theta}^{2}(a)}{2 \mu_{0}}}$.

Possibly useful formula:

$$
\begin{aligned}
& \vec{a} \bullet \nabla \vec{b}=\hat{r}\left(a_{r} \frac{\partial b_{r}}{\partial r}+\frac{a_{\theta}}{r} \frac{\partial b_{r}}{\partial \theta}+a_{z} \frac{\partial b_{r}}{\partial z}-\frac{a_{\theta} b_{\theta}}{r}\right)+\hat{\theta}\left(a_{r} \frac{\partial b_{\theta}}{\partial r}+\frac{a_{\theta}}{r} \frac{\partial b_{\theta}}{\partial \theta}+a_{z} \frac{\partial b_{\theta}}{\partial z}+\frac{a_{\theta} b_{r}}{r}\right) \\
&+\hat{z}\left(a_{r} \frac{\partial b_{z}}{\partial r}+\frac{a_{\theta}}{r} \frac{\partial b_{z}}{\partial \theta}+a_{z} \frac{\partial b_{z}}{\partial z}\right)
\end{aligned}
$$

