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Pset 3: X-ray imaging 

This problem set is based on the diagnostic presented in: 

Schaeffer, D. B. et al. Measurements of electron temperature in high-energy-density plasmas 
using gated x-ray pinhole imaging. Review of Scientifc Instruments 92, 043524 (2021) https: 

//doi.org/10.1063/5.0043833 

. . . which details the use of a pair of imaging diagnostics with different spectral flters to estimate 
the temperature of an optically-thin, bremsstrahlung emitting plasma. You do not need to read the 
entire paper, but the frst two pages may be of interest. Our overall goal is to assess how well this 
diagnostic predicts plasma temperature in the case of inhomogeneous plasmas. 

Start by considering a one-dimensional hydrogen (Z = 1) plasma of length L, with a uniform density 
n and temperature T, emitting bremsstrahlung radiation with emissivity j(E) = n2T−1/2 exp(−E/T) 
(resolved in terms of photon energy in eV, and dropping the constants). 

1.1 Convince yourself that the total emission from the plasma for an observer looking along L isR LI(E) = 0 j(E)dx. Neglect any opacity effects. 
1.2 Grab flter tables from https://henke.lbl.gov/optical_constants/filter2.html for 6 µm 

and 12 µm Beryllium (Be). I recommend you generate a table with photon energies E between 
10–3000 eV with 1000 linearly spaced data points. You can now calculate j and I for these 
energies (this saves interpolating between energies later on). R 

1.3 Calculate Ni(T) = j(E, T)Wi(E)dE (eq. 1 of Schaeffer RSI 2021 above) for the two flter 
transmissions W1,2 and for a range of plasma temperatures (I suggest 10–1000 eV). 1 Plot the 
ratio R(T) = N1(T)/N2(T) of the two flters. What range of plasma temperatures are readily 
distinguishable using this flter pair? 

1.4 For the plasma above, calculate the total emission through flters W1 and W2 using a range 
of temperatures (maybe 10 temperatures, including a couple of points above and below the 
range you think the flters work well in). Use the R(T) calculated in the previous step as a 
look-up table to infer the plasma temperature T from the synthetically measured ratio R, for 
the ten or so temperatures you are using. They should match almost perfectly, but this step 
serves as a check that your code is functioning properly before the next steps. Plot a scatter 
plot of predicted temperature vs true temperature to be sure they match well. 

1Note we assume the detector response K(E) is fat for this exercise 
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In the citation above, the assumption is that T is uniform along the line of sight. Let us now consider 
what will happen when that assumption is relaxed. 

2.1 Generate density and temperature profles n = n0(1 + x2/a2) and T = T0/(1 + x2/a2) where 
n(x > a) = T(x > a) = 0 which approximates a chord through the center of a spherically 
symmetric isobaric (p = nT = p0) plasma such as an ICF hotspot at stagnation. R 

2.2 Evaluate the spectrally resolved emission I(E) = j(x, E)dx for a the same range of plasma 
temperatures you used above. R 

2.3 Calculate the total fltered emission Ni = I(E)Wi(E)dE through the same flters W1 and W2, 
and by comparing their ratio R to the R(T) found in 1.3 above, estimate the temperature in 
the plasma. Is it an over- or an under-estimate of the peak plasma temperature T0?R R 

2.4 A better comparison might be the density weighted average temperature, T̄ = nTdx/ ndx. 
Is the predicted temperature closer to this quantity? 

However, if we are really imaging an approximately spherically symmetric system, then we should 
be able to use an Abel inversion to back out a better estimate of the plasma temperature profle. 

3.1 On an (x, y) grid, generate density and temperature profles n = n0(1 + r2/a2) and T = p
T0/(1 + r2/a2) where r = x2 + y2 and again we set n(x > a) = T(x > a) = 0 so that the 
Abel inversion can be performed.2 

3.2 Evaluate the spectrally resolved emissivity on the grid j(x, y, E) = n(x, y)2T(x, y)−1/2 exp(−E/T)R 
and then calculate the line integrated emission I(y, E) = j(x, y, E)dx for a range of plasma 
temperatures.3 R 

3.3 Calculate Ni(y) = I(y, E)Wi(E)dE for the two flters as before. You can try to calculate their 
ratio R, but this will give a bad estimate for temperatures as we haven’t tried to invert the 
forward Abel transform yet. 

3.4 Have a go at Abel inverting N1(y) and N2(y).4 Let’s call the Abel inverted profles Ñ1(r) and 
Ñ2(r). 

3.5 By taking the ratio of Ñ1(r) and Ñ2(r) and comparing it to the ratio R(T) found in 1.3, estimate 
T(r). 

3.6 Where there any steps in this procedure which you felt were hard to justify? Does the quality 
of the agreement between your initial and predicted temperature profle help to sooth any 
qualms you might have about this? 

2See Hutchinson Fig 4.26 to remind you of the geometry. 
3You could use an existing software package to carry out this step as a forward Abel transform, but it’s much more 

fun to see how the sausage is actually made. 
4You can do this numerically with Hutchinson’s eqn 4.4.3 (think carefully about the limits!) or using a readily available 

module. You’ll learn more by doing the former procedure, and it may be faster than learning how to wrangle your data 
into a format the existing software can use. 
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