
22.812J Nuclear Energy Economics and Policy Analysis S’04 

Classnote: The Time Value of Money 

1. Motivating Example 

To motivate the discussion, we consider a homeowner faced with a decision 

whether to install a solar hot water heater to replace an existing natural gas fired 

hot water heater. 

First, we must design the solar heating system. A typical U.S. family of four in a 

three bedroom house uses about 100 gallons of hot water (at 150 oF) per day. A 

solar thermal system designed to provide this hot water is shown schematically in 

the Figure. Cold water at temperature Tc is pumped to solar collectors where it is 

heated to temperature Th. This hot water is stored in a tank for later use. 

Auxiliary heating is provided for periods of no sun. 
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Figure 1. Schematic of residential solar hot water heating system. 



Assume: that the cold water enters the solar collector at 40 oF and that the hot 

water in the storage tank should be at 150 oF. The daily BTU requirement for hot 

water heating is: 

BTUs required/day = (100 gal/day)( 8.33 lbs/gal)( 1 BTU/lb-oF) (150 - 40) (oF) 

= 91,630 BTU / day. 

Thus the required heat load is about 90,000 BTU/day. Assuming a 50% collector 

efficiency this requires 180,000 BTU/day of solar radiation. 

How much solar heat does the sun deliver each day? This obviously 

depends on both season and location. Typical values are given in the following 

table: 

Solar BTU delivered per January June Average 

sq. ft. per day 

Boston,MA 500 2000 1000 

Tucson, AZ 1000 2500 2000 

If we decide to meet 50% of the required heat load from solar energy (see 

below), this means that, on average, we require about 90 sq. ft. of hot water solar 

collector area per home in Boston, Massachusetts and about 45 sq. ft. in Tucson, 

Arizona. These systems will deliver about 50 gallons of hot water per day at a 

temperature of 150 oF, assuming a feed water temperature of 40 oF. The 

systems thus provide: 

Q = V.r.DT.c=45,000 BTU of heat per day 



where the volumetric flowrate V = 50 gallons per day, the density of water r 

=8.33 lbs/gal, the temperature increase DT=(150 - 40) oF, and the specific heat 

of water c =1 BTU/oF-lb. 

Economic analysis. Is it worthwhile to switch from gas to solar heat for 

the hot water this home requires? In order to answer this question we must 

compare the cost of the two alternatives. 

For the solar hot water heating system, we assume that once the system 

is installed (and paid for), the continuing operating costs are negligible, i.e. the 

cost of electricity for the pump and the cost of maintenance are assumed to be 

very small. We also ignore the cost of the hot water tank, because this must be 

purchased for either the solar or conventional gas hot water heating system. The 

cost estimates for the main components of the solar system are presented in the 

following table.

 System Cost Boston Tuscon 

1. Panels ($17/sq.ft.) $1530 $765 

2. Piping  500  500 

3. Pump & controls  100  100 

4. Installation  500  500 

Total $2630  $1865 

Installation of the solar hot water heating system delivering 45,000 BTU 

per day (or, equivalently, 16.4 million BTU per year) will thus cost about $2600 in 

Boston and $1900 in Tucson. 

How does this compare to the cost of conventional hot water heating by 

gas? To make this comparison, we must weigh a one-time investment in the 

solar heating system against the recurring expense of purchasing the gas. (We 

assume that there is no capital cost for the gas system, since the gas burner is 

integrated into the hot water storage tank.) 



Solar Gas 

One way to make this comparison is to apportion the capital cost of the 

solar heating system uniformly to each year of its operating life, and then 

compare this annualized cost with the annual cost of the gas. But simply dividing 

the capital cost by the number of years of life – 10 years, say -- would understate 

the true cost of the investment, because this would ignore the interest cost of the 

invested capital. To see why, imagine that the homeowner borrows all the 

money to buy the solar heating system from the bank. Let us further assume that 

the loan is for a fixed 10-year term, at a constant interest rate of 10%/year. Each 

year, the homeowner must pay off part of the loan principal and pay interest on 

the portion of the principal that is still outstanding. To make the comparison 

easier, let us further assume that the terms of the loan require the borrower to 

make equal annual payments to the bank throughout the life of the loan – that is, 

the annual ‘debt service’, the sum of the principal repayment and the interest 

owed on the remaining principal, is the same in each year. 
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(Notice the convention on the cash flow diagram: Cash receipts (income 

streams) are denoted as upward arrows; cash outlays (expense streams) are 

denoted as downward arrows.) 

We want to calculate the uniform loan annual payments A as a function of 

the initial loan P: 



After the end of the first year, the homeowner pays interest at rate r on the 

principal, rP, and retires a portion of the principal, D1, where 

A = Pr + D1  (1) 

After the end of the second year, the homeowner pays interest on the 

residual principal of (P-D1) and retires a further portion of the principal, D2, where 

A = (P-D1)r + D2  (2) 

And substituting for D1 in (2) and solving for D2 we have: 

D2 = (A – Pr)(1+r) (3) 

After the end of the third year, the homeowner pays interest on the 

residual principal, P – D1 – D2, and retires a further portion of the principal D3, 

where 

A = (P-D1-D2)r + D3 (4) 

And substituting for D1 and D2 in (4) and solving for D3, we have: 

D3 = (A – Pr) (1+r)2 (5) 

And, by induction, 

Dn = (A – Pr) (1 + r)n-1 (6) 

And since 

N 

ÂD = Pn 
n=1 

we can write 



P = (A - Pr)(1+ (1+ r) + (1+ r)2 + ... + (1+ r)N-1) 
˘(1+ r)N
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and solving for A,wehave 
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The term in square parentheses in equation (1) is called the ‘annual capital 

charge rate’, f. As already noted, the annual payment is comprised partly of 

interest on the outstanding principal and partly of principal repayment. In the 

early years of the loan, interest accounts for the lion’s share of the payment; 

towards the end of the term, most of the payment goes towards repaying the 

principal. 

And for a 10-year loan, with an interest rate of 10%/year, we have:
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We can now calculate the minimum price of natural gas, p*, in dollars per 

thousand cubic feet ($/MCF), above which the annual cost of gas exceeds the 

annual capital charge for the solar heating system, as follows: 

Io f = p* Q 

Where Io is the capital cost of the solar heating system and Q is the annual gas 

requirement (in MCF) for delivering 45,000 BTU/day. 

The heat content of natural gas is about 1 million BTU/MCF. If we 

assume an 80% heating efficiency for the gas, the annual gas requirement is 

given by: 

Q = (16.4 x 106)/0.8 (BTU/yr) x 10-6 (MCF/BTU) 

= 20.5 MCF/yr 



The crossover price of natural gas above which solar heating is economic 

in Boston and Tucson is shown in the table below for different values of the 

interest rate, assuming the solar system is financed with a 10-year loan. 

Minimum delivered price of natural gas above which residential solar hot water 

heating is economical ($/MCF) 

Threshold price of gas, p* ($/MCF) 

Loan interest rate Annual capital Boston Tucson 

r (%/yr) charge rate, f (I=$2630) (I=$1865) 

(%/yr) 

3 11.7 15 10.5 

6 13.6 17.4 12.5 

10 1.3 20.9 14.8 

As expected, solar hot water heating is competitive at a lower gas price in sunny 

Tucson than in Boston. But residential gas prices are considerably higher in 

Boston than in Tucson because of the higher cost of transporting gas to the 

northeastern U.S. If the difference in delivered gas prices between the two cities 

were large enough, solar hot water heating could in principle be economical in 

Boston and not in Tucson. 

In fact, the average price of natural gas delivered to residential consumers 

in Massachusetts during 2001 was $13.35/MCF, and $10.34/MCF in Arizona. 

So, for a typical interest rate (of 6%/yr or more), we can conclude on the basis of 

this analysis that solar hot water heating is not economical in either location. 

However, our analysis has not taken account of the effect of tax credits for 

residential solar installations, which in some instances have been granted for up 

to 50% of the installation cost. Such credits reduce the effective investment cost 

by 50%, which would be enough to make solar hot water heating economical for 

homeowners in some parts of the country, as shown in the following Table. Of 

course, the cost to society of the solar option would not have changed – it is the 

taxpayer who is effectively paying the difference. 



Minimum delivered price of natural gas ($/MCF) above which residential solar hot 

water heating is economical, assuming 50% tax credit 

Threshold price of gas, p* ($/MCF) 

Loan interest rate Annual capital Boston Tucson 

r (%/yr) charge rate, f (I=$1315) (I=$940) 

(%/yr) 

3 11.7 7.5 5.25 

6 13.6 8.7 6.25 

10 1.3 10.45 7.4 

Note: Why is the system designed for only a fraction of the load? At any given 

location, the solar flux varies with season. If the system were designed to satisfy 

100% of the required heat load throughout the year, the solar collector area 

would have to be large enough to meet the load during the part of the year when 

the solar flux is smallest. For the rest of the year, the system would produce 

excess hot water. Reducing the collector area would lessen the cost, but would 

also mean that the heat load would only partly be met when the flux was lowest, 

requiring the purchase of backup heating during that time of the year. A further 

reduction in the collector area would lengthen the interval during which there 

would be insufficient hot water to meet the load, further increasing the 

requirement for backup energy. Beyond a certain point the collector area would 

be so small that there would be no time of the year when it would be capable of 

meeting 100% of the load. In general there is an optimal size for the collector, 

determined by the economic tradeoff between the capital cost of the collector and 

the cost of purchasing auxiliary heat energy. The situation is shown in the Figure 

below. For times t1 < t < t2, 100% of the heat load is met; for times t < t1 and t > t2 

backup energy is required. In the example discussed above, the optimal 

collector was assumed for simplicity to deliver 50% of the required load. 
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Figure: Solar flux, q(t) as a function of time during the year relative to design 
heat requirement 

Key points from example: 

•	 It is often necessary in economic and financial analysis to compare projects 
with cash flows occurring at different points in time. 

•	 You cannot add or subtract cash flows occurring at different points in time 
without first correcting them to a common time base. 

The basic principle is quite simple: a dollar received today is worth more than 
one received a year from today because one can invest today’s dollar (e.g., put it 
in a bank) and accrue interest on it over the coming year. For example, at an 
effective annual interest rate of 6%, today’s dollar would be worth $1.06 in one 
year. We speak of the equivalence of the two cash flows: $1 today and $1.06 a 
year from now. 

(NOTE: This has nothing to do with the phenomenon of inflation – the decline in 
the purchasing power of money over time. There are two distinct phenomena: 
Earning power and purchasing power.) 



Translating a cash flow to an equivalent amount at some future date is called 
finding the future worth. The equivalent amount of a future cash flow today is 
called the present worth. 

The algebraic factors -- time value factors -- used to make these transformations 
are in such common use that a standard nomenclature and algebraic shorthand 
notation has developed. 

Examples:

“Future Worth Factor”, (F/P, i%, N): F = P x (F/P, i%, N) 

Future Worth Factor Factor used to find the future worth, F, in N 
years of an amount, P today 

(F/P,i%,N) (1+i)N 

Present Worth Factor Factor used to convert a future cash flow, F, 
N years from now, into an equivalent amount 

(P/F,i%,N) (1+i)-N 

today, P 

A single cash flow can also be translated into an equivalent annuity -- a uniform 
series of amounts of money occurring each year over a specified number of 
years. And conversely, can translate an annuity into an equivalent single amount 
as of either the beginning or the end of the series (or at any other time). 

Example 
Future worth, F, of an annuity of, say, $100, where the annuity is paid at the end 
of each year for N years: 

F 

100100 100 100 100 

1 2 3 N




N - 2F = 100(1 + i)N -1 + 100(1 + i) +... .+100 
N -1 

n= 100[Â(1 + i) + 1] 
n=1 

N 

= 100[(1 + i) -1]
i 

= 100 x “uniform series compound amount factor” 

= 100 x (F/A,i%,N) 

Conversely, to obtain the value of the annuity, A, equivalent to a future amount F, 
we use the reciprocal factor 

iA = F[
(1+ i)N -1

] 

or 

A = F x ‘sinking fund factor’ 

A = F x (A/F, i%, N) 

Example 
To calculate the present value, P, of an annuity, A, we can sum the PW factors of 
each cash flow: 

P 

A A A 

P = A (1+i)-1 + A(1+i)-2 + . . . . . . . . 



Alternatively, we can use the factors we have already developed, by observing 
that P is both the present value of the annuity itself but also the present value of 
the future worth of the annuity, which we have already calculated. 

N 

P = A[(1 + i) -1].(1+ i)- N 

i 
N 

= A[(1+ i) -1 
Ni(1 + i)

] 

= A x PW of annuity factor 
= A.(P / A, i%, N ) 

Conversely, the annuity A paid over N years that is equivalent in value to a 
present amount P is just the reciprocal 

N 

A = P[ i(1 + i) ]
(1+ i)N -1

= P x capital recovery factor 

= P x (A/P, i%, N) 

(This is, of course, identical to Equation (1) above.) 

****************************************** 

There is no need to memorize the formulae. Spreadsheets and many calculators 
have these functions pre-programmed. Also, most texts on engineering 
economy have tables of values for these factors for a range of values of i% and 
N. 

You should, however, be familiar with the concepts that these factors represent. 
******************************************* 



Factor Name Factor Notation Formula Cash Flow Diagram 

Future worth factor (F/P, i, N) F=P(1+i)N 

(compound 
amount factor) 

Present worth (P/F, i, N) P=F(1+i)-N 

factor 

F 

P 

Uniform series (F/A, i, N) 
A 

È (1+ i)N -1˘ F
compound amount F = 

ÎÍ i ˚̇ 
factor (aka future-
worth-of-an-
annuity factor) 

_______________
Sinking fund factor (A/F, i, N) È i ˘ 

A = F 
ÎÍ (1+ i)N -1˚̇ 

A A A A A A 

Present worth of (P/A, i, N) 
P = A 

È(1 + i)N -1˘ 
an annuity factor 

ÎÍ i(1+ i)N ˙ A A A A A 
˚ 

Capital recovery (A/P, i, N) È i(1+ i)N	 ˘ 
˙factor	 A = P 

ÎÍ(1 + i)N -1˚ 

P 

Special properties of time value factors 

When N --> ∞, the capital recovery factor, (A/P,i%, N) = i 

This is just another way of saying that if you deposit a sum in a bank paying a 
constant interest rate i%/year, you can draw interest on it in perpetuity. 

Conversely, (P/A, i%, N --> ∞) --> 1/i 



i.e., the present worth of an annuity of infinite duration is finite and equal to the 
value of one payment divided by the interest rate. 

Non-Uniform Series 

It is also possible to derive time value factors for non-uniform cash flows. For 
example: 

•	 arithmetic gradient series (or linear gradient series -- cash flows increase 
by a constant amount) 

•	 geometric gradient series (cash flows increase by a constant percentage) 

See Park and Sharp-Bette for these (p.51-57). 


