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Non-locality revisited 1
Spin state of particle pair:

1/2√5 |up, 0°> ⊗ |down, 0°> 
+ 2/√5 |down, 0°> ⊗ |up, 0°> 

+ √3/2√5 |down, 0°> ⊗ |down, 0°> 

Left-hand magnet can be set 
to 0° or 120°.

Right-hand magnet can be 
set to 0° or -120°.



Non-locality revisited 2
Notice that given this spin state:

1/2√5 |up, 0°> ⊗ |down, 0°> 
+ 2/√5 |down, 0°> ⊗ |up, 0°> 

+ √3/2√5 |down, 0°> ⊗ |down, 0°> 

we can conclude that when

LEFT = 0° and RIGHT = 0°

The two particles will never both go up.



Non-locality revisited 3
We now rewrite the spin state using the following basis:

|up, +120°> ⊗ |down, 0°>, 

|down, +120°> ⊗ |up, 0°>, 

|down, +120°> ⊗ |down, 0°> 

|up, +120°> ⊗ |up, 0°>, 

To do this, we need to know how to write |up, 0°> and 
|down, 0°> as linear combinations of |up, +120°> and
|down, +120°>. 



Non-locality revisited 4

|up, 0°> state vector

|up, +120°> state vector

|down, +120°> state vector

|down, 0°> state vector

60°



Non-locality revisited 5

|up, 0°> state vector

|up, +120°> state vector

|down, +120°> state vector

|down, 0°> state vector

|up, 0°> =
1/2|up, +120°>
-√3/2|down, +120°>



Non-locality revisited 6

|up, 0°> state vector

|up, +120°> state vector

|down, +120°> state vector

|down, 0°> state vector

|down, 0°> =
√3/2|up, +120°>
+ 1/2|down, +120°>



Non-locality revisited 7
|up, 0°> = 1/2 |up, +120°> - √3/2 |down, +120°>

|down, 0°> = √3/2 |up, +120°> + 1/2 |down, +120°>

1/2√5 |up, 0°> ⊗ |down, 0°> 

1/2√5 (1/2 |up, +120°> - √3/2 |down, +120°>) ⊗ |down, 0°> 

+ 2/√5 |down, 0°> ⊗ |up, 0°> 

+ 2/√5 (√3/2 |up, +120°> + 1/2 |down, +120°>) ⊗ |up, 0°> 

+ √3/2√5 |down, 0°> ⊗ |down, 0°> 

+ √3/2√5 (√3/2 |up, +120°> + 1/2 |down, +120°>) ⊗ |down, 0°> 



Non-locality revisited 8
1/2√5 (1/2 |up, +120°> - √3/2 |down, +120°>) ⊗ |down, 0°> 

+ 2/√5 (√3/2 |up, +120°> + 1/2 |down, +120°>) ⊗ |up, 0°> 

+ √3/2√5 (√3/2 |up, +120°> + 1/2 |down, +120°>) ⊗ |down, 0°> 

Conclusion: when
LEFT = +120°

and
RIGHT = 0°

the particles never 
both go down.

√3/√5 |up, +120°> ⊗ |up, 0°> 

+ 1/√5 |up, +120°> ⊗ |down, 0°> 

+ 1/√5 |down, +120°> ⊗ |up, 0°> 

+ 0 |down, +120°> ⊗ |down, 0°> 



Non-locality revisited 9
We now rewrite the spin state using the following basis:

|up, +120°> ⊗ |down, -120°>, 

|down, +120°> ⊗ |up, -120°>, 

|down, +120°> ⊗ |down, -120°> 

|up, +120°> ⊗ |up, -120°>, 

To do this, we need to know how to write |up, 0°> and 
|down, 0°> as linear combinations of |up, -120°> and
|down, -120°>. 



Non-locality revisited 10

|up, 0°> state vector

|up, -120°> state vector

|down, -120°> state vector

|down, 0°> state vector

60°

|up, 0°> = 1/2|up, -120°> + √3/2|down, -120°>

|down, 0°> = -√3/2|up, -120°> + 1/2|down, -120°>



Non-locality revisited 11
|up, 0°> = 1/2 |up, -120°> + √3/2 |down, -120°>

|down, 0°> = -√3/2 |up, -120°> + 1/2 |down, -120°>

√3/√5 |up, +120°> ⊗ |up, 0°> 

√3/√5 |up, +120°> ⊗ (1/2 |up, -120°> + √3/2 |down, -120°>) 

+ 1/√5 |up, +120°> ⊗ |down, 0°> 

+ 1/√5 |up, +120°> ⊗ (-√3/2 |up, -120°> + 1/2 |down, -120°>) 

+ 1/√5 |down, +120°> ⊗ |up, 0°> 

+ 1/√5 |down, +120°> ⊗ (1/2 |up, -120°> + √3/2 |down, -120°>)



Non-locality revisited 12
√3/√5 |up, +120°> ⊗ (1/2 |up, -120°> + √3/2 |down, -120°>) 

+ 1/√5 |up, +120°> ⊗ (-√3/2 |up, -120°> + 1/2 |down, -120°>) 

+ 1/√5 |down, +120°> ⊗ (1/2 |up, -120°> + √3/2 |down, -120°>)

Conclusion: when
LEFT = +120°

and
RIGHT = -120°

the particles never 
both go up.

0 |up, +120°> ⊗ |up, -120°> 

+ 2/√5 |up, +120°> ⊗ |down, -120°> 

+ 1/2√5 |down, +120°> ⊗ |up, -120°> 

+ √3/2√5 |down, +120°> ⊗ |down, -120°> 



Non-locality revisited 13
|up, 0°> = 1/2 |up, -120°> + √3/2 |down, -120°>

|down, 0°> = -√3/2 |up, -120°> + 1/2 |down, -120°>

1/2√5 |up, 0°> ⊗ |down, 0°> 

1/2√5 |up, 0°> ⊗ (-√3/2 |up, -120°> + 1/2 |down, -120°>) 

+ 2/√5 |down, 0°> ⊗ |up, 0°> 

+ 2/√5 |down, 0°> ⊗ (1/2 |up, -120°> + √3/2 |down, -120°>) 

+ √3/2√5 |down, 0°> ⊗ |down, 0°> 

+ √3/2√5 |down, 0°> ⊗ (-√3/2 |up, -120°> + 1/2 |down, -120°>) 



Non-locality revisited 14
1/2√5 |up, 0°> ⊗ (-√3/2 |up, -120°> + 1/2 |down, -120°>) 

+ 2/√5 |down, 0°> ⊗ (1/2 |up, -120°> + √3/2 |down, -120°>) 

+ √3/2√5 |down, 0°> ⊗ (-√3/2 |up, -120°> + 1/2 |down, -120°>) 

Conclusion: when
LEFT = 0°

and
RIGHT = -120°

the particles 
sometimes both go 
up (prob = 3/80).

-√3/4√5 |up, 0°> ⊗ |up, -120°> 

|up, 0°> ⊗ |down, -120°> + 1/4√5

+ 1/4√5 |down, 0°> ⊗ |up, -120°> 

+ 5√3/4√5 |down, 0°> ⊗ |down, -120°> 



The basic principles of qm
(1) The physical state of any system is represented by a vector in some 
vector space (usually an infinite-dimensional vector space; note that 
this will be a different vector space for each different system). 

(2) If Φ is a vector representing one possible physical state of some 
system, and Ψ is another vector representing another possible physical 
state of that system, then any arbitrary linear combination aΦ + bΨ
also represents a possible physical state of the system. This is called 
the principle of superposition.

(3) Any experiment that can be performed on a system is represented 
by an orthonormal basis in the vector space for that system. Each 
basis element can be thought of as “labeled” with one of the possible 
outcomes of the experiment.

We will now amend this principle.



Subspaces of vector spaces 1
Imagine a 5-dimensional vector space over the reals—think of 
it as just the set of all 5-tuples of real numbers (x1,x2,x3,x4,x5).

Here is one such vector v1: (1,2,3,4,5).

Here is another such vector v2: (2,3,5,7,11).

Here is a linear combination of v1 and v2:

1.74
2.27
4.01
5.75
9.91

1
2
3
4
5

2
3
5
7

11

+ =-0.68 1.21



Subspaces of vector spaces 2
Imagine a 5-dimensional vector space over the reals—think of 
it as just the set of all 5-tuples of real numbers (x1,x2,x3,x4,x5).

Here is one such vector v1: (1,2,3,4,5).

Here is another such vector v2: (2,3,5,7,11).

Here is another linear combination of v1 and v2:

-4
98
94
90

-126

1
2
3
4
5

2
3
5
7

11

+ =208 -106



Subspaces of vector spaces 3
Imagine a 5-dimensional vector space over the reals—think of 
it as just the set of all 5-tuples of real numbers (x1,x2,x3,x4,x5).

Here is one such vector v1: (1,2,3,4,5).

Here is another such vector v2: (2,3,5,7,11).

Here is yet another linear combination of v1 and v2:

-4
47
43
39
-75

1
2
3
4
5

2
3
5
7

11

+ =106 -55



Subspaces of vector spaces 4

is the subspace “spanned” by v1 and v2.

The set of all such linear combinations

A+2B
2A+3B
3A+5B
4A+7B

5A+11B

1
2
3
4
5

2
3
5
7

11

+ =A B



Subspaces of vector spaces 5
How many dimensions does this subspace have?
That’s right: TWO.
Observe that it has infinitely many orthonormal bases.
For example, these two vectors are orthogonal:

2
3
5
7

11

-4
98
94
90

-126

-8
+294
+470
+630

-1386

=

0

So we can scale them to get an orthonormal basis.



Subspaces of vector spaces 6
How many dimensions does this subspace have?
That’s right: TWO.
Observe that it has infinitely many orthonormal bases.
Similarly, these two vectors are orthogonal:

1
2
3
4
5

-4
47
43
39
-75

-4
+94

+129
+156
-375

=

0

So, again, we can scale them to get an orthonormal basis.



Degeneracy 1
Suppose the vector space for our system has five dimensions.

Suppose the experiment (“measurement”) we are going to 
perform on it has only four possible outcomes.

Still, we represent that experiment by an orthonormal basis—
which must have five elements in it.

So: Two of the elements must correspond to the same 
outcome:

{φ1, φ2, φ3, φ4, φ5}

outcome 1 outcome 2 outcome 3 outcome 4 outcome 4



Degeneracy 2
Suppose our system is in the state ψ.
Then the probability that our “measurement” will yield 
outcome 4 is:

|<φ4 | ψ>|2 + |<φ5 | ψ>|2.

Let (normalized, orthogonal) vectors γ and ν span the same 
subspace as φ4 and φ5. Then:

|<φ4 | ψ>|2 + |<φ5 | ψ>|2 = |<γ | ψ>|2 + |<ν | ψ>|2 .

So we could just as easily have used the following basis to 
represent our experiment:

{φ1, φ2, φ3, γ, ν}

outcome 1 outcome 2 outcome 3 outcome 4 outcome 4



Degeneracy 3
To remove this unwanted redundancy:

Represent outcome 4 not by an orthonormal pair of vectors,

but rather by the subspace they span.

So: An experiment will now be represented by a set of
pairwise-orthogonal subspaces, each corresponding to a 
distinct outcome. These subspaces span the entire vector 
space.

“Pairwise-orthogonal”? 

Explanation: Subspace S1 is orthogonal to subspace S2 iff
every vector in S1 is orthogonal to every vector in S2.



Restating the statistical 
algorithm

Suppose system S is in a state represented by the unit vector Ψ. 
Suppose experiment E is performed on S, where E is 
represented by the set of pairwise-orthogonal subspaces {S1, 
S2,…}, with subspace Si corresponding to outcome i.

To calculate Prob(outcome i):

1. Project Ψ onto the subspace Si.
This can be done by picking an arbitrary orthonormal basis {φ1, φ2, …} for Si, and calculating
< φ1 | Ψ > φ1 + < φ2 | Ψ > φ2 + …

2. Square the length of the resulting vector.
Given our choice of orthonormal basis {φ1, φ2, …} for Si, this will equal
|< φ1 | Ψ >|2 + |< φ2 | Ψ >|2 + …

3. The resulting number is Prob(outcome i).



Hermitian operators 1
An operator is simply a function that takes vectors as inputs 
and yields vectors as outputs: AΨ = Φ.

A linear operator has this additional nice feature:

A(aΦ + bΨ) = aAΦ + bAΨ.

A Hermitian operator has yet another nice feature:

<AΦ | Ψ> = <Φ | AΨ>.

Finally, Φ is an eigenvector of A iff, for some number c,

AΦ = cΦ.

c is called the eigenvalue of Φ (for A). Note that A will have 
some set of eigenvalues.



Hermitian operators 2
Some cool results:
1. If Φ and Ψ are eigenvectors of (linear) operator A, with 
the same eigenvalue c, then so is (aΦ + bΨ).

That means that for each eigenvalue c of A, there is a subspace consisting 
of all and only those vectors with eigenvalue c for A. We call these 
subspace eigenspaces for A.

2. If Φ and Ψ are eigenvectors of Hermitian operator A, with 
different eigenvalues, then Φ and Ψ are orthogonal.

That means that for a Hermitian operator A, its eigenspaces are
pairwise-orthogonal.

So a Hermitian operator automatically “picks out” a set of
pairwise-orthogonal subspaces, each labeled with a distinct
eigenvalue. That makes these operators particularly well 
suited to represent experiments.



Hermitian operators 3
Haven’t we forgotten something? After all, we can also show:

3. If Φ is an eigenvector of Hermitian operator A, then the 
eigenvalue c is a real number.

Supposedly this is a BIG DEAL, since “only real numbers 
could be the values of some measured physical quantity”.

Exercise: Explain why this claim is—notwithstanding its 
prominent position in just about every quantum mechanics 
textbook—COMPLETE AND UTTER NONSENSE.



Two measurement problems 1
Schrödinger’s Equation: the state of the world evolves, at all 
times, in accordance with Schrödinger’s Equation.

Okay, okay: “observable”.

Von Neumann’s Rule: A system S has value v for physical 
quantity Q iff S is in an eigenstate with eigenvalue v of the
Hermitian operator A that represents Q.

Born’s Rule: If a Q-experiment is performed on system S in state 
Ψ, then the expected value of the outcome is <Ψ | AΨ>. (This 
turns out to be equivalent to our statistical algorithm.)

Okay, okay: “measurement”.



Two measurement problems 2
Schrödinger’s Equation + von Neumann’s Rule gives us one 
problem:

Systems will sometimes possess no 
value for any recognizable physical 

quantity.
Schrödinger’s Equation + Born’s Rule gives us another:

CONTRADICTION



Illustration: Schrödinger’s Cat

DOWN

UP

Orientation = 0°

Spin-1/2
particle



The nice case

DOWN

UP

Orientation = 0°

Spin state =
z-up

(certain to go up)



The nice case

DOWN

UP

Orientation = 0°

Spin state =
z-up

(certain to go up)



The not-so-nice case

DOWN

UP

Orientation = 0°

Spin state =
z-down

(certain to go down)



The not-so-nice case

Orientation = 0°

DOWN

UP

Spin state =
z-down

(certain to go down)



The problem
Nice case: final quantum mechanical state will be

Not-so-nice case: final quantum mechanical state will 
be

|z-up> |no flash detected> |block suspended> |Fluffy purring>

|z-down> |flash detected> |block has fallen> |Fluffy squished>

So, if the initial spin state is 
|x-up> = 1/√2(|z-up> + |z-down>)

Then the final quantum mechanical state will be
1/√2(|z-up> |no flash detected> |block suspended> |Fluffy purring>
+ |z-down> |flash detected> |block has fallen> |Fluffy squished>).

WHAT KIND OF STATE IS THAT?!?

AND WHERE ARE OUR TWO POSSIBLE OUTCOMES?



The standard menu of options
1. Add extra variables.

• Bohmian mechanics, modal interpretations, some 
versions of Many Minds

2. Add non-linear, stochastic dynamics.

• textbook “collapse” theories, GRW

3. Give up on Born’s Rule without admitting it.

• Many Worlds, other versions of Many Minds

4. Go soft in the head.

• decoherence, the “bare theory”
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