Philosophy of QM 24.111

Sixth lecture,
14 Feb. 2005

THE TWO-PATH EXPERIMENTWhat we expect:

Orientation $=0^{\circ}$.

to go up through 90°.

THE TWO-PATH EXPERIMENTWhat we expect:

THE TWO-PATH EXPERIMENTWhat we expect:

to go up through 90°.

Orientation $=90^{\circ}$.

THE TWO-PATH EXPERIMENTWhat we observe:

THE TWO-PATH EXPERIMENTWhat we observe:

TWO PROBLEMS:

Our examination of the two-path experiment left us with two different problems:

- What is the particle doing when we do not observe which path it follows? Does it somehow follow both paths? Neither path?
- How can we construct a theory that will give us the right prediction?

We will now focus on the second problemit is much easier than the first!

THE CENTRAL IDEA:

We will use vector spaces to represent

- the physical states of systems of particles;
- the experiments we can perform on these systems.

WARNING: In the literature, these experiments are almost always called "measurements". Be careful of this word's connotations!!!

SPIN MEASUREMENTS

First approximation (for the spin state of a single particle):
Vector space used to represent states and experiments is \mathbf{R}^{2}.
Unit vectors represent different possible spin states.
Orthogonal axes represent different possible experiments.
One axis corresponds to the "up" outcome and the other to the "down" outcome.
Example:

THE STATISTICAL ALGORITHM

To calculate $\operatorname{Prob}(\mathrm{UP})$ for $\mathbf{0}^{\circ}$ experiment:
Project the state-vector onto the "UP, 0° " axis; Square the length of this projection. Answer: $\cos ^{2}\left(45^{\circ}\right)=1 / 2$.

CAUTIOUS INSTRUMENTALISM

We will, for the time being, adopt a cautiously instrumentalist approach to this way of representing physical states. That is, all we take it to "mean", when we say that the spin state of a particle is represented by such-and-such a vector, is that this vector can be "plugged into" the statistical algorithm so as to yield the correct probabilities for outcomes of spin measurements performed on that particle.

DERIVING THE COS² LAW

If a particle is certain to go up through a magnet with orientation θ_{1}, then its probability for going up through a magnet with orientation θ_{2} is

$$
\operatorname{Cos}^{2}\left(\frac{\theta_{1}-\theta_{2}}{2}\right)
$$

DERIVING THE COS² LAW

If $\operatorname{Prob}\left(\mathrm{UP}, \theta_{1}\right)=1$, then $\operatorname{Prob}\left(\mathrm{UP}, \theta_{2}\right)=f\left(\theta_{1}, \theta_{2}\right)$.
Assumptions:

1. f depends only on the angle difference $\left|\theta_{1}-\theta_{2}\right|$.
2. f is the same with UP replaced by DOWN.
3. $\mathrm{f}(0)=1$ (of course); $\mathrm{f}(\pi)=0$.
4. f is monotonically decreasing.
5. f is continuous.
6. The values of f are determined in accordance with the statistical algorithm.

FIRST STEP:

If $\operatorname{Prob}\left(\mathrm{UP}, \theta_{1}\right)=1$, then $\operatorname{Prob}\left(\mathrm{UP}, \theta_{2}\right)=\mathrm{f}\left(\theta_{1}, \theta_{2}\right)$.
Suppose Prob(UP,0) = 1.

Then $\operatorname{Prob}(\mathrm{UP}, \pi)=0$.
(by assumptions 1\&3)
So $\operatorname{Prob}(\mathrm{DOWN}, \pi)=1$.
And $\operatorname{Prob}(\mathrm{UP}, \theta)=f(\theta)$.
And $\operatorname{Prob}(\mathrm{DOWN}, \theta)=\mathrm{f}(\pi-\theta)$.
(either DOWN or UP must happen)

But $\operatorname{Prob}(U P, \theta)+\operatorname{Prob}(D O W N, \theta)=1$.
$\therefore \mathrm{f}(\pi-\theta)=1-\mathrm{f}(\theta)$.
$\therefore \mathrm{f}(\pi / 2)=1 / 2$.

WHAT THIS SHOWS:

Assumptions 1-5 constrain f only this much:
f must be a continuous, monotonically decreasing function with the values $f(0)=1, f(\pi / 2)=1 / 2$, $f(\pi)=0$; and $f(\pi-\theta)=1-f(\theta)$.

ADDING ASSUMPTION 6:

First, we arbitrarily choose an axis to represent the UP,0 outcome...
... and an axis to represent the DOWN,0 outcome.

Note that the DOWN,0 axis is the same as the

UP, π axis.

ADDING ASSUMPTION 6:

Next, we observe that the UP, $\pi / 2$ state-vector must bisect these axes:

Notice that the angle it makes to the UP, 0 axis is $\pi / 4$.

ADDING ASSUMPTION 6:

Next, we observe that the UP, $\pi / 4$ axis must be chosen in such a way that the UP, 0 and UP, $\pi / 2$ statevectors have projections onto it of equal length. There are two such axes:

ADDING ASSUMPTION 6:

But the second choice is ruled out by the requirement that f be monotonically decreasing; for this choice gives us

$$
\mathrm{f}(\pi / 4)<1 / 2
$$

ADDING ASSUMPTION 6:

So we have now fixed the UP, 0, UP, $\pi / 4$, UP, $\pi / 2$, and
UP, π state-vectors (and likewise the UP and
DOWN axes for these four directions).

For these directions, the statistical algorithm yields
$\operatorname{Prob}(\mathrm{UP}, \theta)=\cos ^{2}(\theta / 2)$.

UP,0 state-vector

ADDING ASSUMPTION 6:

The very same reasoning can now be applied to the directions

$$
\begin{aligned}
& \theta=3 \pi / 4 \\
& \theta=\pi / 8 \\
& \theta=3 \pi / 8 \\
& \theta=5 \pi / 8 \\
& \theta=7 \pi / 8
\end{aligned}
$$

...etc. For each $\theta=k \pi / 2^{n}$, the UP, θ state-vector lies at an angle of $\theta / 2$ to the UP, 0 axis; hence $f(\theta)$ $=\cos ^{2}(\theta / 2)$. Since f is continuous, it follows that for every $\theta, \mathbf{f}(\theta)=$ $\cos ^{2}(\theta / 2)-$ i.e., we have derived the $\cos ^{2}$-law.

GETTING FANCIER: COMPLEX NUMBERS

It is in fact possible to measure the spin of a particle in any directionnot just directions confined to the x-z plane. So there is, for example, a possible spin state in which the particle is certain to go UP if spin along the y -direction is measured.
For such a particle, $\operatorname{Prob}(\mathrm{UP}, \mathrm{x})=1 / 2=\operatorname{Prob}(\mathrm{UP}, \mathrm{z})$. What is its state-vector?

Where can the UP,y state-vector fit?

GETTING FANCIER: COMPLEX NUMBERS

Answer: It can't. In order to represent the spin state of such a particle, we need to employ not the vector space R^{2} (the vector space of pairs of real numbers), but the vector space C^{2} (the vector space of pairs of complex numbers).

We will mostly ignore this complication throughout the course.

