Philosophy of QM 24.111

Second lecture.

THE BASIC EXPERIMENT:

detection screen

THE BASIC EXPERIMENT:

spin-1/2 particle

Stern-Gerlach magnet
detection screen

THE BASIC EXPERIMENT:

Stern-Gerlach magnet

detection screen

We can change the magnet orientation to any angle from 0° to 360°; the outcomes are still "up" and "down".

So, for any orientation magnet we choose, we can design a source that will produce particles certain to go up through a magnet with that orientation. What happens when we send such particles through magnets with different orientations?

Beginning orientation $=0^{\circ}$.

WHAT WE SEE:

WHAT WE SEE:

WHAT WE SEE CONFORMS TO THE FOLLOWING LAW:

If a particle is certain to go up
through a magnet with orientation θ_{1}, then its probability for going up through a magnet with orientation θ_{2} is

$$
\cos ^{2}\left(\frac{\theta_{1}-\theta_{2}}{2}\right)
$$

(Quantum mechanics, incidentally, predicts this "cos-squared law" exactly.)

Note that both of our "laws" hold with 'up' replaced by 'down'.

THE TWO-PATH EXPERIMENT:

THE TWO-PATH EXPERIMENT:

THE TWO-PATH EXPERIMENT:

THE TWO-PATH EXPERIMENTWhat we expect:

to go up through 90°.

THE TWO-PATH EXPERIMENTWhat we expect:

THE TWO-PATH EXPERIMENTWhat we expect:

Orientation $=90^{\circ}$.

THE TWO-PATH EXPERIMENTWhat we observe:

Orientation $=90^{\circ}$.

THE TWO-PATH EXPERIMENTWhat we observe:

