Philosophy of QM 24.111

Second lecture, 7 Feb. 2005

THE BASIC EXPERIMENT:

THE BASIC EXPERIMENT:

THE BASIC EXPERIMENT:

detection screen

We can change the magnet orientation to any angle from 0° to 360° ; the outcomes are still "up" and "down".

So, for any orientation magnet we choose, we can design a source that will produce particles *certain* to go up through a magnet with that orientation. What happens when we send such particles through magnets with *different* orientations?

Line of sight

WHAT WE SEE:

WHAT WE SEE:

WHAT WE SEE CONFORMS TO THE FOLLOWING LAW:

If a particle is certain to go up through a magnet with orientation θ_1 , then its probability for going up through a magnet with orientation θ_2

 $COS^2\left(\frac{\theta_1-\theta_2}{2}\right)$

1S

(Quantum mechanics, incidentally, predicts this "cos-squared law" exactly.)

Note that both of our "laws" hold with 'up' replaced by 'down'.

THE TWO-PATH EXPERIMENT:

THE TWO-PATH EXPERIMENT:

THE TWO-PATH EXPERIMENT:

THE TWO-PATH EXPERIMENT— What we expect:

THE TWO-PATH EXPERIMENT— What we expect:

THE TWO-PATH EXPERIMENT— What we expect:

THE TWO-PATH EXPERIMENT— What we observe:

THE TWO-PATH EXPERIMENT— What we observe:

