Philosophy of QM 24.111

Eighth lecture.

Strategy for analysis

1. Break the experimental situation up into steps.
2. At each step, look for easy cases.
3. Describe hard cases as linear combinations of easy cases.
4. Make use of the linearity of Schrödinger's Equation to
"transfer" the analysis of the easy cases over to the hard cases: if
$\Phi \rightarrow \Phi^{\prime}$,
and
$\Psi \rightarrow \Psi$,
then
$\mathbf{a} \Phi+\mathbf{b} \Psi \rightarrow \mathbf{a} \Phi^{\prime}+\mathbf{b} \Psi^{\prime}$.
5. Make discreet use of the collapse postulate, as needed.

Spin measurements revisited

Spin measurements revisited

FIRST CASE:

Initial state is $\left|\mathrm{up}, 0^{\circ}>\right|$ in $\mathrm{R} 1>$

Therefore final state must be \mid up, $0^{\circ}>\mid$ in $\mathbf{R} 2>$

Spin measurements revisited

SECOND CASE:

Therefore final state must be \mid down, $0^{\circ}>\mid$ in $\mathrm{R} 3>$

Spin measurements revisited

THIRD CASE:

Initial state is $\left|\mathrm{up}, 90^{\circ}>\right|$ in $\mathbf{R 1}>$

$=1 / \sqrt{2}\left(\mid\right.$ up, $0^{\circ}>+\mid$ down, $\left.0^{\circ}>\right) \mid$ in R1 $>$

Therefote final pre-measulement state must be $1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in $R 2>+1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>\mid$ in R3 $>$

Spin measurements revisited

What the hell sort of state is that???
Never mind. It will quickly "collapse" into either

Initial state is |up, $90^{\circ}>\mid$ in R1 >

Spin measurements revisited

What the hell sort of state is that???
Never mind. It will quickly "collapse" into either

Initial state is \mid up, $90^{\circ}>\mid$ in R1 $>$ $=1 / \sqrt{2}\left(\mid\right.$ up, $0^{\circ}>+\mid$ down, $\left.0^{\circ}>\right) \mid$ in R1 $>$ $=1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in R1 $>+1 / \sqrt{ } 2 \mid$ down, $\left.0^{\circ}\right\rangle \mid$ in R1 $>$
\mid up, $0^{\circ}>\mid$ in R2 $>$
Prob $=1 / 2$

Spin measurements revisited

What the hell sort of state is that???
Never mind. It will quickly "collapse" into either
or

Initial state is \mid up, $90^{\circ}>\mid$ in R1>

$=1 / \sqrt{ } 2\left(\mid\right.$ up, $0^{\circ}>+\mid$ down, $\left.0^{\circ}>\right) \mid$ in R1 $>$
$=1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in R1 $>+1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>\mid$ in R1 $>$
\mid down, $0^{\circ}>\mid$ in R3 $>$
Prob $=1 / 2$

Coupled spin measurements 1

Coupled spin measurements 2

 FIRST CASE:orientation $=0^{\circ}$

Initial state is \mid up, $0^{\circ}>\mid$ in R1 $>$
Next state is |up, $\mathbf{0}^{\circ}>\mid$ in $\mathbf{R 2}>$
Final state is \mid up, $0^{\circ}>\mid$ in R4 $>$
orientation $=0^{\circ}$

Coupled spin measurements 3 SECOND CASE:

Initial state is \mid down, $0^{\circ}>\mid$ in $R 1>$
Next state is |down, $0^{\circ}>\mid$ in $\mathbf{R} 3>$
Final state is \mid down, $0^{\circ}>\mid$ in $R 5>$

Coupled spin measurements 4 THIRD CASE:

Initial state is \mid up, $90^{\circ}>\mid$ in $R 1>$
$=1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in R1>+1/ $2 \mid$ down, 0° - in R1 $>$ via Schrödinger
$1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in $R 2>+1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>\mid$ in $R 3>$

Coupled spin measurements 5 THIRD CASE:

Then:
$1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in $R 2>+1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>\mid$ in R3 via Schrödinger
$1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in $R 4>+1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>\mid$ in $R 5>$

Coupled spin measurements 6 THIRD CASE:

Then:
$1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in $R 4>+1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>+$ in R5 $>$ via "collapse"
$\left|\mathrm{up}, 0^{\circ}>\right|$ in R4 $>$
$(\mathrm{PROB}=.5)$

Coupled spin measurements 7 THIRD CASE:

orientation $=0^{\circ}$

Then:
$1 / \sqrt{2} \mid$ up, $0^{\circ}>\mid$ in $R 4>+1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>\mid$ in $R 5>$ via "collapse" \mid up, $0^{\circ}>\mid$ in R4 $>$ OR \mid down, $0^{\circ}>\mid$ in R5 $>$ $(\mathrm{PROB}=.5)$

$$
(\mathrm{PROB}=.5)
$$

THE TWO-PATH EXPERIMENTWhat we observe:

Two-path analyzed 1

\mid up, $90^{\circ}>\mid$ in $R 1>\longrightarrow 1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in $R 2>+1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>\mid$ in $R 3>$

Two-path analyzed 2

Orientation $=0^{\circ}$.

(1)

First easy step:

$\left|\mathrm{up}, 0^{\circ}>\right|$ in $\mathrm{R} 2>\longrightarrow\left|\mathrm{up}, 0^{\circ}>\right|$ in $\mathrm{R} 4>$

Two-path analyzed 3

Orientation $=0^{\circ}$.

(1)

Second easy step:
\mid down, $0^{\circ}>\mid$ in $\mathrm{R} 3>\longrightarrow \mid$ down, $0^{\circ}>\mid$ in $\mathrm{R} 4>$

Two-path analyzed 4

THEREFORE:

$1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in $R 2>+1 / \sqrt{2} \mid$ down, $0^{\circ}>\mid$ in $R 3>$
$\longrightarrow 1 / \sqrt{2} \mid$ up, $0^{\circ}>\mid$ in $\mathrm{R} 4>+1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>\mid$ in $R 4>$
$=\mid$ up, $90^{\circ}>\mid$ in R4 $>\longrightarrow \mid$ up, $90^{\circ}>\mid$ in R5 $>$

Two-path with detector 1

Orientation $=0^{\circ}$.

First possibility:
Detector not triggered (probability: 50\%)

$$
\begin{aligned}
& 1 / \sqrt{ } 2 \mid \text { up, } 0^{\circ}>\mid \text { in } R 2> \\
& +1 / \sqrt{ } 2 \mid \text { down, } 0^{\circ}>\mid \text { in } R 3>
\end{aligned}
$$

$—$ collapse $\longrightarrow \mid$ up, $0^{\circ}>\mid$ in $\mathbf{R} 2>\longrightarrow \mid$ up, $0^{\circ}>\mid$ in $R 4>$
$=1 / \sqrt{ } 2 \mid$ up, $90^{\circ}>\mid$ in R4 $>+1 / \sqrt{ } 2 \mid$ down, $90^{\circ}>\mid$ in $R 4>$
$\longrightarrow 1 / \sqrt{ } 2 \mid$ up, $90^{\circ}>\mid$ in $R 5>+1 / \sqrt{ } 2 \mid$ down, $90^{\circ}>\mid$ in R6 $>$

Two-path with detector 2

Two-path revisited

A warning about "superposition"

Remember that

"SUPERPOSITION"

is a mathematical term. It means the same thing as

"LINEAR COMBINATION".

Thus,
$1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in $R 2>+1 / \sqrt{2} \mid$ down, $0^{\circ}>\mid$ in $R 3>$
is a superposition of
\mid up, $0^{\circ}>\mid$ in R2 $>$
and
\mid down, $0^{\circ}>\mid$ in R3 $>$.
It does not follow that the components \mid up, $0^{\circ}>\mid$ in $R 2>$ and \mid down, $0^{\circ}>\mid$ in R3 $>$ describe distinct parts of the particle (one part located in R2, the other located in R3.

The rotation box 1

We can build a box
with the following feature:

Initial spin state
of particle:
| up, θ >

Final spin state
of particle:
up, $\theta+\omega>$

The rotation box 2

It will be extremely useful to describe the behavior of an ω-box by describing how it changes the spin-state vector for the particle.

EX: Initial state | up, 0 >
Final state | up, $\omega>$

The rotation box 3

Remember that we didn't have to choose the upward pointing arrow to represent |up, $0>$. We could equally well represent things this way:

The "total-of-nothing" box 1

Now let's build a more complicated box whose insides look like this:

Total-of-nothing box

What will this box do to the spin state of a particle sent through it?

Answer: NOTHING.

The "total-of-nothing" box 2

To see why, observe how the spin-state vector changes:

A twist on the two-path 1

Produces particles certain to go up through 90°.

Stick a total-of-nothing box here:
What we observe is this:
What is going on???

A twist on the two-path 2

A twist on the two-path 3

Orientation $=0^{\circ}$.

THEREFORE:

$1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in $R 2>-1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>\mid$ in $R 3>$
$\longrightarrow 1 / \sqrt{ } 2 \mid$ up, $0^{\circ}>\mid$ in $R 4>-1 / \sqrt{ } 2 \mid$ down, $0^{\circ}>\mid$ in R4 $>$
$=\mid$ down, $90^{\circ}>\mid$ in R4 $>\longrightarrow \mid$ down, $90^{\circ}>\mid$ in R6 $>$

Quantum bomb-detection 1

Here is a box.
Inside it there might be a

- open the box;

- jiggle the box;
- send but a single photon through the box;
- try to find out whether there is a bomb by any other "classical" means;
YOU WILL SET THE BOMB OFF.

Quantum bomb-detection 2

FIRST CASE: NO BOMB

Orientation $=0^{\circ}$
\mid up, $0>\mid$ in $R 0>$

- $\operatorname{set} \omega=\pi / \mathbf{n}$
- cycle particle through \mathbf{n} times before second magnet

Quantum bomb-detection 3

FIRST CASE: NO BOMB

Orientation $=0^{\circ}$
$|\operatorname{up}, 0>|$ in R0 $>$

- set $\omega=\pi / \mathbf{n}$
- cycle particle through \mathbf{n} times before second magnet

Quantum bomb-detection 4

FIRST CASE: NO BOMB

Orientation $=0^{\circ}$
\mid up, $0>\mid$ in $\mathbf{R 0}>$

- set $\omega=\pi / \mathbf{n}$
- cycle particle through \mathbf{n} times before second magnet

Quantum bomb-detection 5

FIRST CASE: NO BOMB

Orientation $=0^{\circ}$

2
cle n
$|\operatorname{up},(\mathbf{n}-1) \pi / \mathbf{n}>|$ in R4 $>$

- $\operatorname{set} \omega=\pi / \mathbf{n}$
- cycle particle through \mathbf{n} times before second magnet

Quantum bomb-detection 6 SECOND CASE: BOMB

Assume it never explodes

Orientation $=0^{\circ}$
up, $0>\mid$ in R0 $>$

superposition $=\cos (\pi / 2 n) \mid$ up, $0>\mid$ in $R 2>+\sin (\pi / 2 n) \mid$ down, $0>\mid$ in R3 $>$

Quantum bomb-detection 7 SECOND CASE: BOMB

Assume it never explodes

Orientation $=0^{\circ}$
up, $0>\mid$ in R0 $>$

Quantum bomb-detection 8 SECOND CASE: BOMB

Assume it never explodes
Orientation $=0^{\circ}$ up, $0>\mid$ in R0 $>$

superposition $=\cos (\pi / 2 n) \mid$ up, $0>\mid$ in $R 2>+\sin (\pi / 2 n) \mid$ down, $0>\mid$ in R3 $>$

Quantum bomb-detection 9

If there is a bomb, what is the probability that it never explodes?

ANSWER: Just the probability of getting n "up" outcomes in a row.

The probability of getting one "up" outcome, given that the spin state of the measured particle is |up, $\pi / n>$, is $\cos ^{2}(\pi / 2 n)$.

So the probability of getting n "up" outcomes is

$$
\cos ^{2 n}(\pi / 2 n)
$$

This number goes to 1 , in the limit as $\mathbf{n} \Rightarrow \infty$.

So quantum bomb-detection works!!!

Quantum bomb-detection 10

a

