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The statistical algorithm,
continued: Multiple outcomes 

We’ve dealt with an experiment with two outcomes.

How about an experiment (“measurement”) with, say, 17 

outcomes?

Answer:


(1) We need a vector space with at least 17 dimensions. 

(2) We need to choose, within it, a set of 17 pairwise-orthogonal axes. 

(3) We need to associate one of the outcomes with each axis. 

(4) We need to find a unit vector to represent the state of the system being 
“measured”. 

Then we can apply the statistical algorithm in the same 
way that we did, in the case of spin measurements. 



Axes and orthonormal bases,
part 1 
First let’s talk about bases for a vector space. Let’s work with R2. 

Pick any two non-parallel vectors: 

Now pick some arbitrary vector: 

and add the results to get the third. 

This is true no matter which red vector we choose. So our 
green vectors form a BASIS for this vector space. 

We can scale the first vector, 

flip and scale the second, 



Axes and orthonormal bases,
part 2 
It is very convenient to work with bases that 

(1) contain no redundant elements; 
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Axes and orthonormal bases,
part 2 
It is very convenient to work with bases that 

(1) contain no redundant elements; 

(2) contain only vectors of length 1; 

(3) contain only orthogonal vectors. 

A basis with these features is called an 
orthonormal basis. 



Projection and inner product,
part 1

Vectors can—and should!—be thought of as 
pairs (or triples, or quadruples, etc.) of numbers 
(real or complex): 
Given two such vectors 

( )a cand ( )b d 

their inner product is defined as 

1.43 
-.38( )  

.69 
1.37( )  

( )  = 0.4661 

a c( ) ( )  = ac + bd.b d

1.43 .69In our example, ( )  1.37-.38 



Projection and inner product,
part 2

How to project a vector V Observe that since N has length 1, the 
onto an axis: length of <V | N>N is just <V | N>2. 
1. Pick a length-1 vector N lying on the 
axis (any will do). 

2. Calculate <V | N>: 

1.77 .5( )  ( )  = 0.541-.4 .86

3. Multiply N by the result: 

.5 .2705 
.86 .46526.541( )  = ( )  

1.77 
-.4( )  

.5 
.86( )

V 
N 

<V | N>N 



Restating the statistical
algorithm

This means that in stating the statistical algorithm, we can 
replace talk of orthogonal axes and projection with talk of 
orthonormal bases and inner products: 

Suppose system S is in a state represented by the unit vector V. 


Suppose experiment E is performed on S, where E is represented 
by the orthonormal basis {e1, e2,…}, with vector ei 
corresponding to outcome i. 

To calculate Prob(outcome i), calculate <V | ei>2. 



Redundancy in the state-vector 
Observe that if W = -V, then for any vector e, 

<W | e>2 = <V | e>2. 

That means that as far as the statistical algorithm is concerned, 
W and V represent exactly the same physical state. 

(The same holds for W = cV, where c is a complex number 
with absolute value 1.) 



State-vectors and 

experiments


(1) The physical state of any system is represented by a vector in some 
vector space (usually an infinite-dimensional vector space; note that 
this will be a different vector space for each different system). 

(2) If Φ is a vector representing one possible physical state of some 
system, and Ψ is another vector representing another possible physical 
state of that system, then any arbitrary linear combination aΦ + bΨ 
also represents a possible physical state of the system. This is called 
the principle of superposition. 

(3) Any experiment that can be performed on a system is represented 
by an orthonormal basis in the vector space for that system. Each of 
basis element can be thought of as “labeled” with one of the possible 
outcomes of the experiment. 



Position “measurements” 
There is a particle somewhere in the room. We can look for it 

or here, 
or here, 

here, 

…etc. It turns out that we need an infinite-dimensional vector space if 
we are to represent such position “measurements”. It also turns out 
that the very same vector space can be used to represent 
“measurements” of momentum, kinetic energy, and a number of other 
“observables”. We will come back to this later in the course. 



Dirac notation

Assume: Every orthonormal basis represents some possible 
experiment. 

Then: for every state-vector V, there is some experiment E and 
outcome α such that if the system has state V, then E is certain to 
produce α. 

This fact gives us a handy way to write down the vector for a 
system: pick some such experiment and outcome, and describe the 
state-vector by reference to them. 

Ex: a spin-1/2 particle certain to go up through 0° is in state | up, 0° >. 
A particle “located” in region R—in the sense that a measurement of 
its position will, with certainty, reveal it to be in R—is in state | in R >. 



Relations among spin

states


This way of writing down state-vectors leaves it opaque what their 
mathematical relations are—what linear combinations of them 
result in which others of them. Here are some useful relations; 
they are pretty much the only ones we will need: 

| up, 90° > = 1/√2 | up, 0° > + 1/√2 | down, 0° > 

| down, 90° > = 1/√2 | up, 0° > - 1/√2 | down, 0° > 



Spin and position

aspects of states


For the experiments we will analyze, it is very convenient to 
keep separate track of those aspects of a particle’s state that 
have to do with its “spin”—i.e., that determine the probabilities 
that it will get deflected up or down through any given 
magnet—from those having to do with its position (and 
momentum, although we won’t care so much about that). To do 
this, we will represent its state, in the simplest case, by a 
“product” of vectors. For example, if a particle is located in 
region of space R, and is certain to go up through a 0°-magnet, 
we will write its state as | up, 0°> | in R >. 



“Entangled” states 
Not all states of spin-1/2 particles can be written in this way. 
Suppose that R and S are two distinct regions of space. Then 
| up, 0°> | in R > 

is one possible state-vector for our particle; so is 
| down, 0°> | in S >.


The superposition principle tells us that any linear combination 
of two state-vectors is itself a state-vector. So 
1/√2 | up, 0°> | in R > + 1/√2 | down, 0°> | in S > 

is also a state-vector. You cannot rewrite this as a simple 
“product” of a spin part and a position part. Spin and 
position are “entangled”. 



Tensor products: some

warnings 

Suppose we’re given a vector 

1/√2 | up, 0°> | in R > + 1/√2 | down, 0°> | in S >


Can we rewrite this as


1/√2 (| up, 0°> + | down, 0°> )(| in R > + | in S >)?


NO!!! These tensor products work like multiplication: 
xy + zw ≠ (x+y)(z+w). Note, however, that they do 
distribute, so that 

1/√2 | up, 0°> | in R > + 1/√2 | down, 0°> | in R >


can be rewritten as


1/√2 (| up, 0°> + | down, 0°> ) | in R > = | up, 90°> | in R >




Schrodinger’s Equation 
Suppose that our system starts out in state Φ, and changes, over some time (5 
minutes, say), into state Φ’. Of course, it could have started out in any of a multitude 
of different states. So suppose it starts out in state Ψ, and changes over the 5 minute 
interval into state Ψ’. We can schematically represent these two possible 
“trajectories” thus: 

Φ Æ Φ’ 

Ψ Æ Ψ’. 

Since Φ and Ψ are possible states of the system, so is their arbitrary linear 
combination aΦ + bΨ. What Schrodinger’s Equation tells us is that given that Φ and 
Ψ would change in the ways just indicated, their linear combination must change in 
the following way: 

aΦ + bΨ Æ aΦ’ + bΨ’. 

That fact turns out to make it surprisingly easy to analyze what look like complex 
experiments. Note that SE holds only if no “measurement” is taking place. 



The “collapse of the

wave-function”


If a “measurement” is taking place—say, of some system S—then an entirely 
different story gets told about how the state of the system changes: during the 
measurement, the system S must “jump” (sometimes we say “collapse”) into a state 
that is certain to produce the observed result of the measurement. For example, 
suppose we have a particle in the state 

1/√2 | up, 0°> | in R > + 1/√2 | down, 0°> | in S >, 

and we look for it by placing a detector in region R. If we find it there (if our 
detector triggers, that is), then its state instantly changes to 

| up, 0°> | in R >. 

On the other hand, if we don’t find it there (our detector does not trigger), then its 
state instantly changes to 

| down, 0°> | in S >. 



Spin measurements revisited


region R2 
orientation 0° 

DOWN 
region R1 

region R3 



Spin measurements revisited


FIRST CASE: 

DOWN 

Initial state is | up, 0°> | in R1 > 

Therefore final state must be | up, 0°> | in R2 > 



SECOND CASE: 

Initial state is | down, 0°> | in R1 > 
DOWN 

Spin measurements revisited 

Therefore final state must be | down, 0°> | in R3 > 



THIRD CASE: 

DOWN 

Initial state is | up, 90°> | in R1 > 

= 1/√2 (| up, 0°> + | down, 0°> ) | in R1 > 
= 1/√2 | up, 0°> | in R1 > + 1/√2 | down, 0°> | in R1 > 

Therefore final pre-measurement state must be 
1/√2 | up, 0°> | in R2 > + 1/√2 | down, 0°> | in R3 > 

Spin measurements revisited 



Spin measurements revisited

What the hell sort of state is that??? 
Never mind. It will quickly “collapse” into either 

DOWN 

Initial state is | up, 90°> | in R1 > 

= 1/√2 (| up, 0°> + | down, 0°> ) | in R1 >


= 1/√2 | up, 0°> | in R1 > + 1/√2 | down, 0°> | in R1 >




Spin measurements revisited

What the hell sort of state is that??? 
Never mind. It will quickly “collapse” into either 

DOWN 

Initial state is | up, 90°> | in R1 > 

= 1/√2 (| up, 0°> + | down, 0°> ) | in R1 >


= 1/√2 | up, 0°> | in R1 > + 1/√2 | down, 0°> | in R1 >


| up, 0°> | in R2 > 



Spin measurements revisited

What the hell sort of state is that??? 

Never mind. It will quickly “collapse” into either


or


DOWN 

Initial state is | up, 90°> | in R1 > 

= 1/√2 (| up, 0°> + | down, 0°> ) | in R1 >


= 1/√2 | up, 0°> | in R1 > + 1/√2 | down, 0°> | in R1 >


| down, 0°> | in R3 > 


