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Handout #2: Derivation of the Turbo Bell’s Inequality (less formally known as the Clauser-

Horne-Holt-Shimony inequality) 
 

Suppose we have two apparatuses, one of which can be set to perform either experiment a1 or 

a2, and the other of which can be set to perform either experiment b1 or b2. (If it helps, you can 

think of these experiments as being measurements performed on each of a pair of particles.) 

Suppose that each of these four experiments has just two possible outcomes; in each case, we 

will label one of these outcomes “up” and the other “down”. Thus, a1 and a2 might consist in 

sending one of a pair of particles through a Stern-Gerlach magnet with orientation -120° and 0°, 

respectively; while b1 and b2 might consist in sending the other one of the pair of particles 

through a Stern-Gerlach magnet with orientation +120° and 0°, respectively. So there are four 

possible combinations of experiments, and in each case the outcomes will either be correlated 

(both “up” or both “down”) or anti-correlated (one “up” and the other “down”). Let us finally 

define a random variable Cor that has value 1 if the outcomes are correlated and value –1 if they 

are anti-correlated. 

Then for each combination of experiments, we can define the expected correlation E(x,y) 

(where x = either a1 or a2 and y = either b1 or b2) to be the expected value of Cor, given that we 

are performing the combination of experiments (x,y). Thus, 

 

E(x,y) = Prob(up,up | x,y) + Prob(down, down | x,y) 

- Prob(down,up | x,y) - Prob(up, down | x,y). 

 

Note that E(x,y) is rather easy to measure experimentally: We just perform the combination of 

experiments x and y a large number of times N, count up the number of times the outcomes are 



the same (both “up” or both “down”), subtract the number of times they are different (one “up” 

and the other “down”), and divide by N. 

Here is the Turbo Bell’s Inequality: 

 

| E(a1, b1) + E(a1, b2) + E(a2, b1) - E(a2, b2) | ≤ 2. 

 

Before proceeding to the derivation of this inequality, let us just note two things about it. 

First—provided the assumptions needed in its derivation hold—it is absolutely universal in 

scope. That is, it has nothing in particular to do with quantum mechanics, or with any other 

theory for that matter. Second, it is clearly violated by our correlated spin experiment, given the 

foregoing choice of a1, a2, etc. For E(a1, b1) is just the expected value of Cor, when the magnet 

on the left has orientation –120° and the magnet on the right has orientation +120°; in such a 

case, we know that the probability that the outcomes are different is .25, and so the expected 

value of Cor is .75 - .25 = .5. Likewise, E(a1, b2) = E(a2, b1) = .5. Finally, since the outcomes are 

certain to be different if both magnets have orientation 0°, E(a2, b2) = -1. Plugging these values 

into the equation, we get the result that | .5 + .5 + .5 – (-1) | = 2.5 ≤ 2, a contradiction. 

On to the derivation. We begin by assuming that we are equipped with some theory—maybe 

quantum mechanics, maybe something entirely different—that provides us with the following 

three things: 

(i) A set of possible initial physical states λ of the system upon which we are performing the 

combined experiments. 

(ii) For each such state λ, and each choice of experiment combination (x,y), a value for each 

of the probabilities Prob(up,up | x,y,λ), Prob(up, down | x,y,λ), Prob(down,up | x,y,λ), 

Prob(down,down | x,y,λ).  



(iii) For each experiment combination (x,y), a probability density ρ(λ | x,y) that 

encapsulates how likely it is that the physical state λ has one value or another, given that we are 

performing experiments x and y.  

We will assume that there is some way to parametrize the physical states λ so that the 

integral ∫ρ(λ |x,y)dλ is well-defined. Assuming it is, it must of course have value 1. 

We now make two crucial assumptions about the probabilities that our theory introduces: 

No conspiracy: The probability density distribution for λ is independent of our choice of 

experiment combination (x,y). Thus, ρ(λ | a1,b1) = ρ(λ | a2,b1) =ρ(λ | a1,b2) =ρ(λ | a2,b2), in which 

case we can simplify notation by replacing all of these by ρ(λ). 

Locality: For any pair of outcomes (u,v), any choice of experiment combination (x,y), and 

any physical state λ, Prob(u,v | x,y,λ) = Prob(u | x,λ) • Prob(v | y,λ). This condition reflects the 

thought that the physical state λ contains enough information to render irrelevant to the outcome 

of one experiment what is going on with the other experiment (i.e., either what the other 

experiment is, or what its outcome is).  

With these conditions in place, the derivation is fairly straightforward. We first note (making 

implicit use of No conspiracy) that 

E(x,y) = 

∫[Prob(u,u | x,y,λ) + Prob(d,d | x,y,λ) - Prob(d,u | x,y,λ) - Prob(u,d | x,y,λ)]ρ(λ)dλ. 

Using Locality, and rearranging, this becomes 

∫{[Prob(u | x,λ) - Prob(d | x,λ)] • [Prob(u | y,λ) - Prob(d | y,λ)]}ρ(λ)dλ. 

Let us now introduce the following useful abbreviations: 

A1(λ) = Prob(u | a1,λ) – Prob(d | a1,λ) 

A2(λ) = Prob(u | a2,λ) – Prob(d | a2,λ) 

B1(λ) = Prob(u | b1,λ) – Prob(d | b1,λ) 

B2(λ) = Prob(u | b2,λ) – Prob(d | b2,λ) 

Observe that for every value of λ, -1 ≤ A1(λ) ≤ 1; likewise for the other three functions. 

Putting all this together, we get 



| E(a1, b1) + E(a1, b2) + E(a2, b1) - E(a2, b2) | 

= | ∫{Α1(λ)•B1(λ) + Α1(λ)•B2(λ) +Α2(λ)•B1(λ) - Α2(λ)•B2(λ)}ρ(λ)dλ | 

≤ ∫ | {Α1(λ)•B1(λ) + Α1(λ)•B2(λ) +Α2(λ)•B1(λ) - Α2(λ)•B2(λ)}ρ(λ) | dλ 

= ∫ | {Α1(λ)•B1(λ) + Α1(λ)•B2(λ) +Α2(λ)•B1(λ) - Α2(λ)•B2(λ)} | ρ(λ) dλ 

≤ ∫{ | Α1(λ)•B1(λ) + Α1(λ)•B2(λ) | + | Α2(λ)•B1(λ) - Α2(λ)•B2(λ) | }ρ(λ) dλ 

= ∫{ | Α1(λ) | • | B1(λ) + B2(λ) | + | Α2(λ) | • | B1(λ) - B2(λ) | }ρ(λ) dλ 

≤ ∫{ | B1(λ) + B2(λ) | +  | B1(λ) - B2(λ) | }ρ(λ) dλ 

≤ ∫2ρ(λ) dλ 

= 2. 

Why are we so sure that { | B1(λ) + B2(λ) | +  | B1(λ) - B2(λ) | } ≤ 2? Here is one way to see this: 

First, remember that B1(λ) and B2(λ) have values between –1 and 1 (inclusive). For notational 

convenience, replace them by “X” and “Y”. Then if we take the square of the quantity { | X + Y| 

+ | X – Y| }, we get 

X2 + 2XY + Y2 +2|X2 – Y2| + X2 – 2XY + Y2,  

which simplifies to  

4X2, if X2 ≥ Y2, and 

4Y2, if X2 ≤ Y2.  

Either way, since X2 ≤ 1 and Y2 ≤ 1, we know that this quantity is ≤ 4. But that means that its 

positive square root { | X + Y | + | X – Y | } is ≤ 2. 

 


