Assignment \#3: Bell's Inequalities and Spin Measurements (due Lec \#7)

1. Read chapters 1 and 2 of Hughes, and chapter 2 of Albert.
2. Do all eight problem in Hughes, pp. 37-8.
3. Describe, in the abstract, what would be required of an experiment performed on a spin- $1 / 2$ particle in order for that experiment to count as a simultaneous measurement of spin in two distinct directions, θ_{1} and θ_{2}. Hint: How many distinct outcomes would this experiment need to have? What would their probabilities have to be (assuming, say, that the experiment is performed on a particle for which $\left.\operatorname{Prob}\left(\mathrm{UP}, 0^{\circ}\right)=1\right)$?
4. Show that, given the quantum mechanical probabilities for the experimental arrangement described in part II of handout \#1, it is not possible to design an apparatus which simultaneously measures the spin components of particle 1 in both the 0° direction and the $+120^{\circ}$ direction (i.e., the probabilities that such a joint measurement yields for UP, 0° and $\mathrm{UP},+120^{\circ}$ must be the same as those yielded, respectively, by an ordinary 0°-measurement and by an ordinary $+120^{\circ}$-measurement). You may assume that if you could design such an apparatus, then you could also design an apparatus which simultaneously measures the spin components of particle 2 in both the 0° direction and the -120° direction. Hint: It's easyjust think about the derivation of Bell's Inequalities in handout \#1.
5. It is possible to prepare a spin- $1 / 2$ particle in a state such that no matter what spinmeasurement is performed on it, $\operatorname{Prob}(\mathrm{UP})=.5$. Show that this state cannot be represented by a vector.
