
Non-Computable Functions (part 2)

1 The Busy Beaver Function (
k, if M yields output k on an empty input

• Productivity(M) =
0, otherwise

the productivity of the most productive (one-symbol) • BB(n) =
Turing Machine with n states or fewer.

2 BB(n) is not Turing-computable

• Assume for reductio: Turing Machine MBB computes BB(n).

• Construct Turing Machine M I , which behaves as follows on an empty
input:

Step 1: Print a sequence of k ones, for a certain k (specified below).

Result: k.

Step 2: Duplicate your string of ones.

Result: 2k.

Step 3 Apply BB to your string of ones (using MBB).

Result: BB(2k).

Step 4 Add one to your string of ones.

Result: BB(2k) + 1.

• Let k = b + c + d

b = the number of states used in Step 2 (to duplicate)

c = the number of states used in Step 3 (to apply BB)

d = the number of states used in Step 4 (to add one)

Note: since a Turing Machine can output k using k states,

M I = k + b + c + d = 2k

1

• MBB is impossible:

– At Stage 3, it produces as long a sequence of ones as a machine
with 2k states could possibly produce.

– But (as noted above) M I = 2k.

– So at Stage 3, it produces as long a sequence of ones as it itself
could possibly produce.

– So at Stage 4, it produces a longer string of ones than it itself
could possibly produce.

• So MH isn’t computable after all.

3 The Universal Turing Machine

There is a Universal Turing Machine, MU , which does the following:

• if the mth Turing Machine halts given input n, leaving the tape in
configuration p, then MU halts given input hm, ni leaving the tape in
configuration p.

• if the mth Turing Machine never halts given input n, then MU never
halts given input hm, ni.

4 The Fundamental Theorem

The reason Turing Machines are so valuable is that it is possible to prove the
following theorem:

Fundamental Theorem of Turing Machines A function from natural num-
bers to natural numbers is Turing-computable if and only if it can be
computed by an ordinary computer, assuming unlimited memory and
running time.

• One shows that every Turing-computable function is computable by
an ordinary computer (given unlimited memory and running time) by
showing that one can program an ordinary computer to simulate any
given Turing Machine.

2

• One shows that every function computable by an ordinary computer
(given unlimited memory and running time) is Turing-computable by
showing that one can find a Turing Machine that simulates any given
ordinary computer.

5 Church-Turing

Computer scientists tend to think that something stronger than the Funda-
mental Theorem is true:

Church-Turing Thesis A function is Turing-computable if and only if it
can be computed algorithmically.

For a problem to be solvable algorithmically is for it to be possible to
specify a finite list of instructions for solving the problem such that:

1. Following the instructions is guaranteed to yield a solution to the prob-
lem, in a finite amount of time.

2. The instructions are specified in such a way that carrying them out
requires no ingenuity of any kind: they can be followed mechanistically.

3. No special resources are required to carry out the instructions: they
could in principle be carried out by a machine built from transistors.

4. No special physical conditions are required for the computation to suc-
ceed (no need for faster-than-light travel, special solutions to Einstein’s
equations, etc).

3

MIT OpenCourseWare
https://ocw.mit.edu/

24.118 Paradox and Infinity
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

