
Computability: Turing Machines 

1 The Main Result 

• We’ll focus on functions f : N → N. 

• For a computer program to compute f is for it to yield f(n) as output 
whenever it is given n as input (n ∈ N). 

• Theorem: not every function is computable. 

(And I can give you examples!) 

2 How We’ll Get There 

• Turing Machines are computers of an especially simple sort. 

• We’ll see that some functions are not Turing-computable. 

• But: any function that can be computed using an ordinary computer 
is also computed by some Turing Machine. 

3 Turing Machines 

Hardware 

Memory tape A long strip of paper, divided into cells: 

(An assistant is ready to add paper on either end, as needed.) 

Tape-reader At any given time, the reader is positioned on a cell of the 
memory tape and is able to perform any of the following functions: 

• Read the symbol written on the cell 

• Write a new symbol on the cell 

• Move one cell to the left 

• Move one cell to the right 

1



Software 

A finite list of command lines: 

hcurrent statei hcurrent symboli hnew symboli hdirectioni hnew statei 

Think of a command line as encoding the following instruction: 

If you are in hcurrent statei and your reader sees hcurrent symboli 
written on the memory tape, replace hcurrent symboli with hnew symboli. 
Then move one step in direction hdirectioni, and go to hnew statei. 

Operation 

• Start out in state 0. Then carry out the following procedure, for as
long as you are able:

– Perform the instruction corresponding to the (first) command line
that matches your current state and the symbol on which your
reader is positioned.

– Repeat.

• If you are unable carry out the procedure, halt.

4 A Turing Machine Simulator 

http://morphett.info/turing/ 

5 Computing functions on a Turing Machine 

Computability: 

• For a computer program to compute f is for it to yield f(n) as output
whenever it is given n as input.

Turing Computabiity: 

• M takes n (n ∈ N) as input if it starts out with a tape that contains
only a sequence of n ones (with the reader positioned at the left-most
one, if n > 0).

2

http://morphett.info/turing


• M delivers f(n) as output if it halts with a tape that contains only a 
sequence of f(n) ones (with the reader positioned at the left-most one, 
if n > 0). 

• M computes a function f(x) if and only if it delivers f(n) as output 
whenever it is given n as input. 

6 The Fundamental Theorem 

The reason Turing Machines are so valuable is that it is possible to prove the 
following theorem: 

Fundamental Theorem of Turing Machines A function from natural num-
bers to natural numbers is Turing-computable if and only if it can be 
computed by an ordinary computer, assuming unlimited memory and 
running time. 

• One shows that every Turing-computable function is computable by 
an ordinary computer (given unlimited memory and running time) by 
showing that one can program an ordinary computer to simulate any 
given Turing Machine. 

• One shows that every function computable by an ordinary computer 
(given unlimited memory and running time) is Turing-computable by 
showing that one can find a Turing Machine that simulates any given 
ordinary computer. 

7 Church-Turing 

Computer scientists tend to think that something stronger than the Funda-
mental Theorem is true: 

Church-Turing Thesis A function is Turing-computable if and only if it 
can be computed algorithmically. 

For a problem to be solvable algorithmically is for it to be possible to 
specify a finite list of instructions for solving the problem such that: 

3



1. Following the instructions is guaranteed to yield a solution to the prob-
lem, in a finite amount of time. 

2. The instructions are specified in such a way that carrying them out 
requires no ingenuity of any kind: they can be followed mechanistically. 

3. No special resources are required to carry out the instructions: they 
could in principle be carried out by a machine built from transistors. 

4. No special physical conditions are required for the computation to suc-
ceed (no need for faster-than-light travel, special solutions to Einstein’s 
equations, etc). 

8 Coding Turing Machines as Numbers 

The Plan 

Turing Machine → Sequence of symbols → Sequence of numbers → Unique number 

Sequence of symbols → Sequence of numbers 

“r” → 0 
“∗” → 1 
“l” → 2 

Sequence of numbers → Unique number 

Codes the sequence hn1, n2, . . . , nki as the number: 

n1+1 n2+1 nk+1 p · p · . . . · p1 2 k 

where pi is the ith prime number. 

(Treat any number that doesn’t code a valid sequence of command lines as 
a code for the “empty” Turing Machine.) 

4



 
 

 

MIT OpenCourseWare 
https://ocw.mit.edu/ 

24.118 Paradox and Infinity 
Spring 2019 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms



