
              
      

              
             

              
             

               
              
      

            
              

        
           

            
            

        

24.118: Paradox and Infinity, Spring 2019 

Problem Sets 7 and 8: Non-Measurable Sets 

How these problems will be graded: 

• In Part I there is no need to justify your answers. Assessment will be 
based on whether your answers are correct. 

• In Part II you must justify your answers. Assessment will be based both on 
whether you give the correct answer and on how your answers are justified. 
(In some problem sets I will ask you to answer questions that don’t have 
clear answers. In those cases, assessment will be based entirely on the basis 
of how your answer is justified. Even if it is unclear whether your answer is 
correct, it should be clear whether or not the reasons you have given in 
support of your answer are good ones.) 

• No answer may consist of more than 150 words. Longer answers will 
not be given credit. (Showing your work in a calculation, a proof, or a 
computer program does not count towards the word limit.) 

• You may consult published literature and the web. You must, however, 
credit all sources. Failure to do so constitutes plagiarism and can have se-
rious consequences. For advice about when and how to credit sources see: 
https://integrity.mit.edu (You do not need to credit course materials.) 

Preliminaries 

The line segment [a, b] is the set of real numbers x such that a ≤ x ≤ b. The Borel Sets 
are the members of the smallest set B such that: (i) every line segment is in B, (ii) if a 
set A is in B, then so is R − A, and (iii) if a countable family of sets is in B, then so is 
its union. 
The Lebesgue Measure, λ, is the unique function on the Borel Sets that satisfies these 

three conditions: 

Length on Segments λ([a, b]) = b − a for every a, b ∈ R. 

Countable Additivity �[ � 
λ {A1, A2, A3, . . .} = λ(A1) + λ(A2) + λ(A3) + . . . 

whenever A1, A2, . . . is a countable family of disjoint sets for each of which λ is 
defined. 

Non-Negativity λ(A) is either a non-negative real number or the infinite value ∞, for 
any set A in the domain of λ. 
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Part I 

1. Of each of the following sets of real numbers, determine whether it is a Borel Set. If 
it is a Borel Set, specify its Lebesgue Measure. (You may assume that every Borel 
Set has a Lebesgue Measure.) (2 points each) � � 

11(a) ,
4 3 
1 
3

1 

(b) {� } 
, 1 
3 

� �(c)
4� 

51 11− [(d) ], ,
4 6 3 2� � 

(f) {0, 1, 2, . . . }� � � 

1− {
3

154 

51 1}(e) , ,
4 6 2 

11∪(g) , 1 , 22 , 23 , . . . �5 6 2� � 
−1 111 

21 , 22 , 23 , . . .(h) 0,
2 

(i) a Vitali set 

(j) the complement of a Vitali set 

(As usual, [a, b] = {x : a ≤ x ≤ b} and [a, b) = {x : a ≤ x < b}.) 

Part II 

2. Choosing Socks, Choosing Shoes 

Recall that a choice set for set A is a set containing exactly one element from each 
member of A. And recall the Axiom of Choice: 

Axiom of Choice Any set of non-empty, non-overlapping sets has a choice set. 

On a first reading, the Axiom of Choice is likely to sound trivial. This exercise is 
aimed at helping you understand why it is not. (It is a variant of an explanation 
given long ago by British philosopher Bertrand Russell.) 

Here are two standard set-theoretic axioms: S 
Union If a set A exists, then so does its union, A.S 

(Recall that A is the set {x : x is a member of some element of A}, i.e. the 
set of members of members of A.) 

Separation Let φ(x) be any formula of the form “x is such and such” (for instance, 
“x is a natural number”). Then if set A exists, the following set also exists: 
{x : x ∈ A and φ(x)} (i.e. the set of objects that are members of A and satisfy 
condition φ(x)). 
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Here is an example of how Separation might be used. Let φ(x) be the formula “x is 
female”. Separation entails that if the set O = {x : x is an octopus} exists, so does 

{x : x ∈ O and x is female} 

which is the set of female octopuses. 

(a) Let S be an infinite set, each member of which is a set of two shoes: a right 
shoe and a left shoe. Assume that no two elements of S have any shoes in 
common. Now suppose you’d like to have a choice set for S. The Axiom 
of Choice guarantees that a choice set exists, but it doesn’t give you much 
information about what it looks like. S 
Let’s see if we can do better than that. It follows from Union that S exists.S 
Is there an application of Separation to S that delivers a choice set for S? If 
so, sketch a proof. If not, explain informally why not. (5 points) 

(b) Let S be an infinite set, each member of which is a set of two socks. We will 
assume that all socks are alike, and, in particular, that there is no such thing 
as a “right” sock or a “left” sock. (We will also assume, unrealistically, that 
socks are not located in space and therefore that socks cannot be distinguished 
by their spatial locations.) Assume that no two elements of S have any socks 
in common. Now suppose you’d like to have a choice set for S. The Axiom 
of Choice guarantees that a choice set exists, but it doesn’t give you much 
information about what it looks like. S 
Let’s see if we can do better than that. It follows from Union that S exists.S 
Is there an application of Separation to S that delivers a choice set for S? If 
so, sketch a proof. If not, explain informally why not. (5 points) 

3. Back to Bacon 

This problem is about Bacon’s Puzzle, which is discussed in Section 3.4 of the text-
book. (Before reading further, you might consider having a look at the text, to 
refresh your memory of the puzzle.) 

Towards the end of the discussion in the book, I write: 

What is the probability that an individual who follows the strategy will an-
swer correctly? I don’t know the answer to this question but I suspect that 
when one follows the strategy one’s probability of success is best thought 
of ill-defined. (Section 3.4.9) 

Throughout this problem, I will explain why I harbor such suspicions. 

Let S be the set of all functions from N to {0, 1}. We partition S into orbits, as 
follows: for any f, g ∈ S, f is in the same orbit as g if and only if there are at most 
finitely many numbers k such that f(k) 6= g(k). 
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(a) Let f0(n) = 0 for each n ∈ N, and let O0 be f0’s orbit. Describe a bijection µ0 

from N to O0. (5 points) 

(b) Given an arbitrary orbit O and a function f ∗ ∈ O, describe a bijection µ from 
N to O. (5 points) 

The lesson of problem (3b) is that any representative from a given orbit can be used 
to define a well-ordering of that orbit. 

Let us now consider the problem of how one might go about choosing a representative 
from each orbit. Ask yourself: is the set of orbits analogous to the set of pairs of 
shoes of problem (2a), or is it analogous to the set of pairs of socks of problem (2b)? 
In other words: is there a formula φ(x) such that an application of Separation based 
on φ(x) could be used to specify a set that contains exactly one representative for 
each orbit? 

As it turns out, the answer to this question is “no”. It is impossible to set forth an 
explicit rule that singles out exactly one representative from each orbit: the only way 
to show that a set of representatives exists is to use the Axiom of Choice. 

(c) Extra Credit: Show that one cannot prove that a set with exactly one repre-
sentative from each orbit exists without using the Axiom of Choice. You may 
avail yourself of the following important result, due to Robert Solovey: one 
cannot prove that a non-measurable set exists without using Axiom of Choice. 
(5 points) 

Back to Bacon’s Puzzle. The question we wish to consider is: what is the probability 
that an individual who follows the strategy will answer correctly? To fix ideas, let 
the individual in question be P0 and assume that she has been given a blue hat. Let 
the function f@ represent the actual distribution of hats and let O@ be f@’s orbit. 
Then our question can be reformulated as follows: what is the probability that orbit 
O@ was assigned a representative ρ such that ρ(0) = 1? 

In fact, there is a natural way of answering this question, relative to a well-ordering 
of O@. Let µ be a bijection from N to O@. Then µ can be used to characterize the 
following probability function: 

|Z ∩ {µ(0), µ(1), . . . , µ(n)}|
p(Z) = df lim 

n→∞ |{µ(0), µ(1), . . . µ(n)}| 

(Here Z is a subset of O@. If you’d like a refresher on this type of probability function, 
see Section 6.4.1.2 of the textbook.) 

Let X be the proposition that O@ was assigned a representative ρ such that ρ(0) = 1. 
(Formally: X = {f ∈ O@ : f(0) = 1}.) In the next couple of questions I’ll ask you 
to calculate the value of p(X) relative to different orderings. 
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(d) Suppose that O@ is orbit O0 from problem (3a) and that µ is the bijection µ0 

you gave in your answer to (3a). What is the value of p(X)? (5 points) 

(e) For a given integer k ≥ 2, define a bijection µ from N to O0 such that p(X) = 
k 
1 . 

(10 points) 

As problem (3e) suggests, you can get p(X) to have any value you want, by picking 
a sufficiently devious µ. So the probability function p(. . . ) can only be assumed to 
assign a sensible probability to proposition X if it is defined using a sensible choice 
of µ. 

When it comes to particular orbits, you may well think that there are choices of µ 
that stand out as particularly natural. Perhaps you think that when it comes to the 
specific orbit O0 of problem (3a), the choice of µ0 that you supplied in your answer 
is a particularly natural way of ordering O0. (Maybe it even delivers the comforting 
result that p(X) = 0.5.) 

But what about the general case? Is there a general recipe that can be used to 
specify a natural ordering of each of our uncountably many orbits. Unfortunately, 
the answer is “no”: 

(f) Show that it is impossible to explicitly characterize a relation < such that each 
orbit O is well-ordered by <. You may make use of problem (3c). (10 points) 

In the absence of a recipe for specifying a natural ordering for each orbit, I have 
no idea how one might go about characterizing sensible probability functions over 
the members of our orbits. That ’s why I suspect that the probability of success in 
Bacon’s Puzzle, given that one follows the strategy, is not, in general, well-defined. 

4. The Square of Evil1 

Say that a countable ordinal is an ordinal with countably many members, and let 
ℵ1 be the set of all countable ordinals. ℵ1 is itself an ordinal. From this it follows 
that ℵ1 must have uncountably many members. (For suppose otherwise, then ℵ1 is 
a countable ordinal, and therefore a member of itself. But no ordinal is a member of 
itself.) 

Think of the Continuum Hypothesis as the claim that ℵ1 has the same cardinality 
as [0,1], and therefore that there is a bijection f from [0,1] to ℵ1. Assume that the 
Continuum Hypothesis is true, and define the following ordering <e of [0,1]: 

for any a, b ∈ [0, 1], a <e b if and only if f(a) ∈ f(b) 

Since the ordinals in ℵ1 are well-ordered by ∈, it is an immediate consequence of this 
definition that <e is a well-ordering of [0,1]. 

1The construction is due to the Polish mathematician Wac law Sierpiński. I learned about it in Frank 
Arntzenius, Adam Elga and John Hawthorne’s “Bayesianism, Infinite Decisions, and Binding”. 
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(a) Show that <e has the following additional property: for each x ∈ [0, 1], there 
are at most countably many y ∈ [0, 1] such that y <e x. (5 points) 

We will now use <e to color the unit square [0,1]×[0,1], using the following criterion: 

For each point hx, yi ∈ [0, 1] × [0, 1], color hx, yi white if x <e y, and black 
otherwise. 

I will refer to the colored square as the Square of Evil. Now let hx0, y0i be a 
particular point on the Square of Evil: 

(b) How many white points are there in the row {hz, y0i : z ∈ [0, 1]}? (5 points) 
(c) How many white points are there in the column {hx0, zi : z ∈ [0, 1]}? (5 points) 

Suppose that a point is selected at random from the Square of Evil. (It is selected by 
twice applying the Standard Coin Toss Procedure of Section 7.1.4.1 of the reading 
materials, once to pick an x coordinate, and once to pick a y coordinate.) 

(d) Someone tells you which row the selected point is in, and asks you to bet on 
whether the selected point is black or white. How should you bet? (5 points) 

(e) Someone tells you which column the selected point is in, and asks you to bet on 
whether the selected point is black or white. How should you bet? (5 points) 

It will rain or snow, but you don’t know which. If it rains, you should wear outfit A 
rather than outfit B. If it snows, you should also wear outfit A rather than outfit B. 
So you should wear outfit A! 

Here is a generalization of that seemingly attractive idea: 

Dominance Let Π be a set of possible states of the world over which you have no 
control. You know that exactly one member of Π obtains, but you don’t know 
which. Suppose you have two options, A and B. Suppose, moreover, that for 
each π ∈ Π you should choose A over B on the assumption that π obtains. Then 
you should choose A over B. 

(f) Use the Square of Evil to show that Dominance is false. (10 points) 
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