The Ordinals (Part II)

1 The First Few Ordinals

$\operatorname{ordinal}$	name of ordinal	well-order type represented		
{}	0			
{0}	0'			
$\{0,0'\}$	0"	ĺ		
$\{0,0',0''\}$	0′′′	ΙΪΙ		
:	:			
$\{0,0',0'',0''',\dots\}$	ω			
$\{0,0',0'',0''',\ldots,\omega\}$	ω'			
$\{0, 0', 0'', 0''', \dots, \omega, \omega'\}$	ω''			
:	:	:		

2 Constructing the Ordinals

Construction Principle At each stage, we introduce a new ordinal, namely: the set of all ordinals that have been introduced at previous stages.

Open-Endedness Principle However many stages have occurred, there is always a "next" stage, that is, a first stage after every stage considered so far.¹

3 Ordering the Ordinals

The ordinals are well-ordered by the following precedence relation:

$$\alpha <_o \beta \leftrightarrow_{df} \alpha \in \beta$$

¹It is important to interpret the Open-Endedness Principle as entailing that there is no such thing as "all" stages—and therefore deliver the result that there is no such thing as "all" ordinals.

4 Representing Well-Order Types

Since every ordinal is a set of ordinals, the elements of an ordinal are always well-ordered by $<_o$. So we may set forth the following:

Representation Principle Each ordinal represents the well-order type that it itself instantiates under $<_o$.

5 Some Definitions

- $\alpha' = \alpha \cup \{\alpha\}$
- A successor ordinal is an ordinal α such that $\alpha = \beta'$ for some β .
- A **limit ordinal** is an ordinal that is not a successor ordinal.

6 Ordinal Addition

The intuitive idea: A well-ordering of type $(\alpha + \beta)$ is the result of starting with a well-ordering of type α and appending a well-ordering of type β at the end.

Formally:

$$\begin{array}{rcl} \alpha & + & 0 & = & \alpha \\ \alpha & + & \beta' & = & (\alpha + \beta)' \\ \alpha & + & \lambda & = & \bigcup \{\alpha + \beta : \beta < \lambda\} \; (\lambda \; \text{a limit ordinal}) \end{array}$$

- Ordinal addition is associative: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.
- Ordinal addition is *not* commutative: it is not generally the case that $\alpha + \beta = \beta + \alpha$.

7 Ordinal Multiplication

The intuitive idea: A well-ordering of type $(\alpha \times \beta)$ is the result of starting with a well-ordering of type β and replacing each position in the ordering with a well-ordering of type α .

Formally:

$$\begin{array}{lll} \alpha & \times & 0 & = & 0 \\ \alpha & \times & \beta' & = & (\alpha \times \beta) + \alpha \\ \alpha & \times & \lambda & = & \bigcup \{\alpha \times \beta : \beta < \lambda\} \; (\lambda \text{ a limit ordinal}) \end{array}$$

- Ordinal multiplication is associative: $(\alpha \times \beta) \times \gamma = \alpha \times (\beta \times \gamma)$.
- Ordinal multiplication is *not* commutative: it is not generally the case that $\alpha \times \beta = \beta \times \alpha$.

8 Some Additional Operations

• Exponentiation:

$$\begin{array}{rcl} \alpha^0 & = & 0' \\ \alpha^{\beta'} & = & (\alpha^{\beta}) \times \alpha \\ \alpha^{\lambda} & = & \bigcup \{\alpha^{\beta} : \beta < \lambda\} \ (\lambda \text{ a limit ordinal}) \end{array}$$

• Tetration:

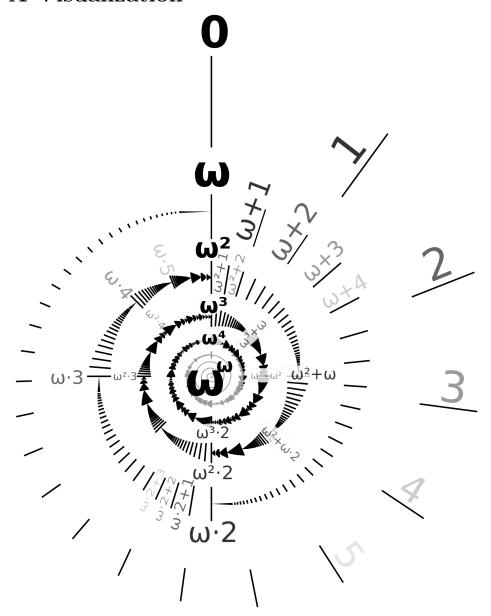
$$\begin{array}{rcl} {}^{0}\alpha & = & 0' \\ {}^{\beta'}\alpha & = & ({}^{\beta}\alpha)^{\alpha} \\ {}^{\lambda}\alpha & = & \bigcup \{{}^{\beta}\alpha : \beta < \lambda\} \ (\lambda \text{ a limit ordinal}) \end{array}$$

• And so forth...

9 Some Additional Ordinals

well-order type represented	:	: = :		$\varepsilon \text{ times}$	ω times		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[wolad ess]
members $\{0,0',\dots\}$	$\{0,0',\dots,\omega\}$	$\{0,0',\ldots,\omega,\omega+0',\ldots\}$	$\{0,0',\ldots,\omega,\omega+0',\ldots,\omega+\omega,\omega+\omega+0',\ldots\}$	$\{0,\ldots,\omega,\ldots,\omega+\omega,\ldots,\omega+\omega+\omega,\ldots\}$	$\{0,\ldots,\omega\times\omega,(\omega\times\omega)+0',(\omega\times\omega)+0'',\ldots\}$	$(\omega \times \omega) + \omega + \omega + \omega \{0, \dots, \omega \times \omega, (\omega \times \omega) + 0', \dots (\omega \times \omega) + \omega, (\omega \times \omega) + \omega + 0' \dots \}$	$\{0,\ldots,\omega\times\omega,\ldots(\omega\times\omega)+\omega,\ldots,(\omega\times\omega)+\omega+\omega+\omega\ldots\}$	$\{0,\ldots,\omega\times\omega,\ldots(\omega\times\omega)+\omega,\ldots,(\omega\times\omega)+\omega+\omega+\omega\ldots\ldots\\(\omega\times\omega)+(\omega\times\omega)\cdots(\omega\times\omega)+(\omega\times\omega)+(\omega\times\omega)+\omega+\omega\ldots\ldots\}$	$\{0\dots,\omega\times\omega,\dots\omega\times\omega\times0'',\dots,\omega\times\omega\times0''',\dots\}$	$\{0,\ldots,\omega,\ldots,\omega\times0'',\ldots,\omega\times0''',\ldots\}$
ordinal ω	$\omega + 0'$	$\frac{\beta}{\beta}$	$\omega + \omega + \omega$	$\mathcal{S} \times \mathcal{S} = \mathcal{S}_{0''}$	$(\omega \times \omega) + (\omega \times \omega)$	$\{ \omega \times \omega + \omega + \omega \times \omega \}$	$(\omega \times \omega) + (\omega \times \omega)$ $= \omega \times \omega \times 0''$	$\omega \times \omega \times 0'''$	$\begin{array}{ccc} \mathcal{S} \times \mathcal{S} \times \mathcal{S} \\ \mathcal{S} \times \mathcal{S} & = \end{array}$	ω^{ω}

10 A Visualization²



² Source: https://commons.wikimedia.org/wiki/File:Omega-exp-omega-labeled.svg. File made available on Wikimedia under the Creative Commons CC0 1.0 Universal Public Domain Dedication. Pop-up casket (talk); original by User:Fool [CC0].

MIT OpenCourseWare https://ocw.mit.edu/

24.118 Paradox and Infinity Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.