The Ordinals (Part II)

1 The First Few Ordinals
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2 Constructing the Ordinals

Construction Principle At each stage, we introduce a new ordinal, namely:
the set of all ordinals that have been introduced at previous stages.

Open-Endedness Principle However many stages have occurred, there is
always a “next” stage, that is, a first stage after every stage considered
so far.!

3 Ordering the Ordinals

The ordinals are well-ordered by the following precedence relation:

a<,f rgacf

'Tt is important to interpret the Open-Endedness Principle as entailing that there is
no such thing as “all” stages—and therefore deliver the result that there is no such thing
as “all” ordinals.



4 Representing Well-Order Types

Since every ordinal is a set of ordinals, the elements of an ordinal are always
well-ordered by <,. So we may set forth the following:

Representation Principle Each ordinal represents the well-order type that
it itself instantiates under <.
5 Some Definitions
e o/ =aU{a}
e A successor ordinal is an ordinal « such that o = 8’ for some f.

e A limit ordinal is an ordinal that is not a successor ordinal.

6 Ordinal Addition

The intuitive idea: A well-ordering of type (a + [3) is the result of starting
with a well-ordering of type « and appending a well-ordering of type [ at
the end.

Formally:
a + 0 = «
a + f = (a+p9)
a + A = Ha+p:5< A} (X alimit ordinal)

e Ordinal addition is associative: (o« + ) +v=a+ (8+ 7).

e Ordinal addition is not commutative: it is not generally the case that
a+p=p+a.

7 Ordinal Multiplication

The intuitive idea: A well-ordering of type (a x () is the result of starting
with a well-ordering of type [ and replacing each position in the ordering
with a well-ordering of type «.



Formally:

a x 0 =0
a x [ = (axf)+a«
a x A = Haxp:p <A} (Xalimit ordinal)

e Ordinal multiplication is associative: (a x ) x v =a X (f x 7).

e Ordinal multiplication is not commutative: it is not generally the case
that a x = X a.

8 Some Additional Operations
e Exponentiation:
a’ =0

= (’)xa
or = U{a?: 8 <A} () alimit ordinal)
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e Tetration:

OOZ =
Fa = (Pa)
‘o = U{Pa: B < A} (X alimit ordinal)

e And so forth. ..
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10 A Visualization?
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2 Source: https://commons.wikimedia.org/wiki/File:Omega-exp-omega-labeled.svg.
File made available on Wikimedia under the Creative Commons CCO0 1.0 Universal Public
Domain Dedication. Pop-up casket (talk); original by User:Fool [CCO].
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