Logic I Fall 2009 Session 18 Handout

Formal semantics for PL

- An *interpretation* for PL is a specification of each of the following:
 - A universe of discourse UD, where $\emptyset \subset$ UD.
 - For each sentence letter **S** of SL, a truth-value assigned to **S**.
 - For each n-place predicate letter \mathbf{F} of PL, a set of n-tuples of members of UD assigned to \mathbf{F} .
 - E.g., if we are interpreting 'Lxy' to mean x lives in y, then to 'L' we would assign { $\langle \text{ Ephraim, Somerville} \rangle, \langle \text{ Damien, Somerville} \rangle, \langle \text{ Vann McGee, Boston} \rangle, \dots$ }.
 - For each individual constant \mathbf{c} of PL, an individual u assigned to \mathbf{c} , where u is a member of UD.
- *Denotations* of individual terms on **I** and **d**:
 - If t is a variable, then $den_{\mathbf{I},\mathbf{d}}(\mathbf{t}) = \mathbf{d}(\mathbf{t})$.
 - If t is an individual constant, then $den_{I,d}(t) = I(t)$.
- Variants of variable assignments:
 - d[u/x] is the variable assignment that assigns u to x and is otherwise just like d.

E.g., if $d_1 = \{ \langle Alice, \mathbf{x} \rangle, \langle Bill, \mathbf{y} \rangle, \langle Carol, \mathbf{z} \rangle, \dots \}$, then we have: $d_1[John/\mathbf{y}] = \{ \langle Alice, \mathbf{x} \rangle, \langle John, \mathbf{y} \rangle, \langle Carol, \mathbf{z} \rangle, \dots \}$

- *Satisfaction* for formulas of PL:
 - 1. If **P** is a sentence letter, **d** satisfies **P** on **I** iff I(P)=T.
 - 2. If **P** is an atomic formula of the form $\mathbf{At}_1 \dots \mathbf{t}_n$, where **A** is an n-place predicate of PL and $\mathbf{t}_1 \dots \mathbf{t}_n$ are individual terms of PL, **d** satisfies **P** on **I** iff $\langle \operatorname{den}_{\mathbf{I},\mathbf{d}}(\mathbf{t}_1), \dots, \operatorname{den}_{\mathbf{I},\mathbf{d}}(\mathbf{t}_n) \rangle \in \mathbf{I}(\mathbf{A}).$
 - 3. If **P** is of the form \neg **Q**, then **d** satisfies **P** on **I** iff **d** does not satisfy **Q** on **I**.
 - 4. If **P** is of the form **Q**&**R**, then **d** satisfies **P** on **I** iff **d** satisfies **Q** on **I** or **d** satisfies **R** on **I**.
 - 5. If **P** is of the form $\mathbf{Q} \vee \mathbf{R}$, then **d** satisfies **P** on **I** iffeither **d** satisfies **Q** on **I** or **d** satisfies **R** on **I**.

- 6. If **P** is of the form $\mathbf{Q} \supset \mathbf{R}$, then **d** satisfies **P** on **I** iffeither **d** doesn't satisfy **Q** on **I** or **d** satisfies **R** on **I**.
- 7. If **P** is of the form $\mathbf{Q} \equiv \mathbf{R}$, then **d** satisfies **P** on **I** iffeither **P** and **Q** are both satisfied by **d** on **I** or neither **P** nor **Q** is satisfied by **d** on **I**.
- 8. If **P** is of the form $(\forall \mathbf{x})\mathbf{Q}$, then **d** satisfies **P** on **I** iff for any $\mathbf{u} \in UD$, $d[\mathbf{u}/\mathbf{x}]$ satisfies **Q** on **I**.
- 9. If **P** is of the form $(\exists \mathbf{x})\mathbf{Q}$, then **d** satisfies **P** on **I** iff for some $\mathbf{u} \in UD$, $d[\mathbf{u}/\mathbf{x}]$ satisfies **Q** on **I**.
- Truth for PL sentences:
 - A sentence \mathbf{P} is true on interpretation \mathbf{I} iff every variable assignment \mathbf{d} for \mathbf{I}^1 satisfies \mathbf{P} on \mathbf{I} .

Formal semantics for PLE

- The definition of truth is the same.
- We extend the definitions of satisfaction, denotation, and interpretation.
- An interpretation for PLE includes all elements of an interpretation for PL plus:
 - An assignment of a set of n+1-tuples to each n-place functor of PLE.

E.g., if we want to interpret 'g(x,y)' to mean *the sum of x and y*, then to 'g' we would assign $\{ \langle 1,1,2 \rangle, \langle 1,2,3 \rangle, \langle 1,3,4 \rangle \dots \}$.

- Denotations in PLE are the same with the addition of a clause for functor-terms:
 - If **t** is a term $\mathbf{f}(\mathbf{t}_1, \ldots, \mathbf{t}_n)$, where **f** is an n-place functor, $\mathbf{t}_1, \ldots, \mathbf{t}_n$ are terms, and $\langle \operatorname{den}_{\mathbf{I},\mathbf{d}}(\mathbf{t}_1), \ldots, \operatorname{den}_{\mathbf{I},\mathbf{d}}(\mathbf{t}_n), \operatorname{u} \rangle \in \mathbf{I}(\mathbf{f})$, then $\operatorname{den}_{\mathbf{I},\mathbf{d}}(\mathbf{t}) = \operatorname{u}$.

E.g., in the above example, if we let our term t be 'g(1,3)', then since 'g' is a two-place functor and $\langle 1,3,4 \rangle \in g$, den_{I.d}(t) = 4.

- Clause (2) of the definition of *satisfaction* already covers functor-expressions, since these count as individual terms. But we need to add a clause for '=':
 - 10. If **P** is an atomic formula of the form $\mathbf{t_1} = \mathbf{t_2}$, then **d** satisfies **P** on interpretation **I** iffden $_{\mathbf{I},\mathbf{d}}(\mathbf{t_1}) = \operatorname{den}_{\mathbf{I},\mathbf{d}}(\mathbf{t_2})$

¹Variable assignment d is for I iff d assigns only objects in I's UD.

MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.