Logic I - Session 22

Meta-theory for predicate logic

The course so far

- Syntax and semantics of SL
- English / SL translations
- TT tests for semantic properties of SL sentences
- Derivations in SD
- Meta-theory: SD is adequate for SL (sound, complete)
- Syntax and semantics of PL
- English / PL translations
- Derivations in PD
- Next: PD is adequate for PL (sound, complete)

Soundness, Completeness

- There are meta-theoretical results for PD as well as PDE. In particular:
- If Γ is a set of PL sentences and P is a PL sentence, then $\Gamma \vDash P$ iff $\Gamma \vdash P$ in $P D$.
- If Γ is a set of PLE sentences and P is a PLE sentence, then $\Gamma \vDash P$ iff $\Gamma \vdash P$ in PDE.
- We'll focus on PL and PD, coming back to PLE and PDE later if we have time.

Soundness

- We'll focus on soundness today.
- If $\Gamma \vdash P$ in $P D$, then $\Gamma \vDash P$.
- To prove: If there's a PD derivation all of whose primary assumptions are members of Γ and in which P occurs only in the scope of those assumptions, then P is quantificationally entailed by Γ.

Soundness

- As with soundness for SD, we prove our result by proving something stronger:
- Every sentence in a PD derivation is q-entailed by the set of assumptions with scope over it.
- Our proof of this will appeal to a mathematical induction analogous to the one we used to prove the soundness of SD.

Soundness

- Let Γi be the set of assumptions open at line i in a derivation, and let Pi be the sentence on line i .
- Basis clause: $\Gamma 1 \vDash$ P1.
- Inductive step: If $\Gamma i \vDash$ Pi for all $i \leq k$, then $\Gamma k+1 \vDash P k+1$.
- We'll prove this by cases, one case for each rule that could have justified line $\mathrm{k}+1$.
- Conclusion: For every line k in a derivation, $\Gamma \mathrm{K} \vDash \mathrm{Pk}$.
- I.e.: Every sentence in a PD derivation is q-entailed by the set of assumptions with scope over it.

Soundness: Basis clause

- To prove: $\Gamma 1=$ P1.
- = No interpretation mem Г1 true but makes P1 false.
- The first line of any derivation is an assumption.
- Every assumption counts as being in its own scope, so Pl is in the scope of Pl and only P1.
- I.e. $\lceil 1=\{$ P1 $\}$.
- Trivially, any interpretation that makes P1 true makes P1 true. So $\left\{P_{1}\right\} \neq \mathrm{P} 1$. So $\Gamma 1 \vDash \mathrm{P} 1$.

Soundness: Inductive step

- Suppose $\Gamma i=$ Pi for all lines isk in a derivation.
- To prove: $\lceil k+1 \vDash P k+1$.
- Strategy: Line $\mathrm{k}+1$ must be justified by some rule, and no matter what rule it is, we have $\lceil\mathrm{k}+1 \vDash \mathrm{P} k+1$.
- We have all 12 rules from SD, so we need the result to hold for those cases.
- Our proofs don't need much adjustment...

Inductive step: \&I

- Suppose line $K+1$ is justified by \&I.
- Then Pk +1 is justified by two earlier lines i and j, and $\mathrm{Pk}+1$ is of the form $\mathrm{Qi} \& \mathrm{Rj}^{\mathrm{j}}$.
- So we should prove: $\Gamma k+1 \vDash$ Qi \& Rj
- It suffices to prove that $\Gamma k+1 \models$ Qi and $\Gamma k+1 \vDash R \mathrm{j}$. - Why? Fill in defs of ' \vDash ' and '\&'.

Inductive step: \&I

- If any I that mem $\Gamma k+1$ true makes Qi true, and any I that mem $\Gamma k+1$ true makes $R j$ true, then: any I that mem $\Gamma k+1$ true makes Qi true and Rj true.
- If I makes Qi is true and Rj true, then I makes Qi \& Rj true. [By our semantics for '\&']
- If any I that mem $\Gamma k+1$ true makes Qi true, and any I that mem $\Gamma k+1$ true makes Rj true, then: any I that mem $\Gamma k+1$ true makes Qi \& $R j$ true.
- I.e.: if $\Gamma k+1 \vDash$ Qi and $\Gamma k+1 \vDash R j$, then $\Gamma k+1 \vDash$ Qi \& Rj .

Inductive step: \&I

- OK, so prove: $\Gamma k+1 \vDash$ Qi and $\Gamma k+1 \vDash$ Rj.
- $\Gamma \mathrm{i} \vDash \mathbf{Q i}$ and $\Gamma \mathrm{j} \vDash \operatorname{Rj}$ [by the inductive hypothesis, since i and j are earlier than $k+1$]
- $\Gamma i \subseteq \Gamma k+1$ and $\Gamma j \subseteq \Gamma k+1$
- So we want:
- If $\Gamma i \vDash$ Qi and $\Gamma i \subseteq \Gamma k+1$, then $\Gamma k+1 \vDash$ Qi, and if $\Gamma \mathrm{j} \vDash \mathrm{Rj}$, and $\Gamma \mathrm{j} \subseteq \Gamma k+1$ then $\Gamma k+1 \models R \mathrm{j}$.
- So we just need 11.3.2, which is easy:
- If $\Gamma \vDash P$ and $\Gamma \subseteq \Gamma^{*}$, then $\Gamma^{*} \vDash P$.

Inductive step: \&I

- So now we know: $\Gamma k+1 \vDash$ Qi and $\Gamma k+1 \vDash R \mathrm{j}$.
- So from this, we know that if line $k+1$ is justified by \& I, then $\Gamma k+1 \vDash$ Qi \& Rj.
- So the first case of our proof of the inductive step is complete. We need to prove analogous results for all other rules of PD.
- The interesting ones are the new ones, the rules for quantifiers.

Inductive step: $\forall E$

- Suppose Pk+1 is justified by $\forall E$.
- Then $P k+1$ is of the form $Q(a / x)$ and is justified by applying $\forall E$ to some earlier line i containing $(\forall x) Q$.
- $\Gamma i \vDash(\forall x) Q \quad$ [by inductive hypothesis]
- $\Gamma \mathrm{i} \subseteq \Gamma \mathrm{k}+1$
- So $\Gamma k+1 \vDash(\forall x) Q \quad$ [again, by 11.3.2]
- So we just need to show that: if $\Gamma k+1 \vDash(\forall x) \mathbf{Q}$, then $\Gamma k+1 \vDash \mathbf{Q}(a / x)$.
- This will follow if $\{(\forall x) Q\} \vDash \boldsymbol{Q}(a / x)$.

Inductive step: $\forall E$

- We'll sketch a proof of the general claim 11.1.4:
- For any $a, x, Q,\{(\forall x) Q\} \vDash Q(a / x)$.
- Suppose I makes $(\forall x) Q$ true. Then for every d for I: - d satisfies $(\forall x) Q$.
- So for every $u \in U D, d[u / x]$ satisfies Q. [By df. sat.]
- So for any $a, d[I(a) / x]$ satisfies Q.
- $d[I(a) / x]$ satisfies Q iff d satisfies $Q(a / x)$
[11.1.1]
- So d satisfies $Q(a / x)$.
- So any I that makes $(\forall x) Q$ true makes $Q(a / x)$ true.

Inductive step: $\forall E$

- If any I that makes $(\forall x) Q$ true makes $Q(a / x)$ true, that just means that $\{(\forall x) Q\} \vDash \mathbf{Q}(a / x)$.
- So now we know that:

$$
\text { if } \Gamma k+1 \vDash(\forall x) \mathbf{Q} \text {, then } \Gamma k+1 \vDash \mathbf{Q}(a / x) \text {. }
$$

- And we knew that $\Gamma k+1 \vDash(\forall x) Q$.
- So $\Gamma k+1 \vDash Q(a / x)$.
- $Q(a / x)$ was just $P k+1$, so we've shown that if $P k+1$ is justified by $\forall E$, then $\lceil k+1 \vDash P k+1$.

Progress report

- Recall, we're trying to prove PD's soundness by proving that no matter what rule you use to get Pk+1, it's qentailed by $\Gamma \mathrm{k}+1$.
- We've talked about the SD rules and $\forall E$. To complete our proof of PD's soundness, we need to check the remaining quantifier rules.
- Let's do one more. The most complicated is $\exists \mathrm{E}$.

Inductive step: $\exists \mathrm{E}$

- Suppose Pk+1 is justified by $\exists \mathrm{E}$.
- Then we have lines: $h \mid(\exists x) Q$

j	$Q(a / x)$
m	Pk+1
k+1	Pk+1

- And a can't be in Pk+1, ($\exists x) Q$, or in any open assumptions
- Note: $\Gamma m=\lceil h \cup\{Q(a / x)\}$.

Inductive step: $\exists \mathrm{E}$

- $\left\lceil\mathrm{m} \vDash \mathrm{Pk}_{\mathrm{k}} 1\right.$
[by inductive hypothesis]
- So Th $\cup\{\mathrm{Q}(\mathrm{a} / \mathrm{x})\} \vDash \mathrm{Pk}+1$
[since $\Gamma m=\Gamma h \cup\{Q(a / x)\}]$
- And $\Gamma h \cup\{Q(a / x)\} \subseteq \Gamma k+1 \cup\{Q(a / x)\} \quad[$ since $\Gamma h \subseteq \Gamma k+1]$
- So $\lceil K+1 \cup\{Q(a / x)\} \vDash P k+1 \quad$ [by 11.3.2]
- Also, $\Gamma k+1 \vDash(\exists x) Q \quad[$ since $\Gamma h \subseteq \Gamma k+1$ and $\Gamma h \models(\exists x) Q]$
- So what we need is this:
- If $\Gamma k+1 \vDash(\exists x) Q$ and $\Gamma k+1 \cup\{Q(a / x)\} \vDash P k+1$, then $\Gamma \mathrm{k}+1 \vDash \mathrm{Pk}+1$ (assuming our restrictions on a)

Inductive step: $\exists \mathrm{E}$

- So, assume (i) a doesn't occur in Pk+1, ($\exists x) Q$, or in any member of $\Gamma k+1$, (ii) $\lceil k+1 \vDash(\exists x) Q$, and
(iii) $\lceil k+1 \cup\{Q(a / x)\} \vDash P k+1$.
- Prove $\Gamma k+1 \models$ Pk+1 by reductio.
- Assume some I mem $\Gamma k+1$ true and makes Pk+1 false.
- Then by (ii), I makes ($\exists x$)Q true.
- So for any d for I, d satisfies ($\exists x$)Q. [by def. truth]
- For for any d, there's some $u \in U D$ s.t. $d[u / x]$ satisfies \mathbf{Q} on I [by def. satisf.]

Inductive step: $\exists \mathrm{E}$

- Let I^{\prime} be just like I except that $I^{\prime}(a)=u$.
- What object a denotes is irrelevant to whether an interpretation makes sentences without a true.
- So I' still mem 「k+1 true and Pk+1 false
- Since I^{\prime} mem $\Gamma k+1$ true, by (ii) it makes $(\exists x) Q$ true

Inductive step: $\exists \mathrm{E}$

- And I' makes $\mathrm{Q}(\mathrm{a} / \mathrm{x})$ true. Because...
- d[u/x] satisfies Q on I^{\prime} (I^{\prime} only differs from I on a)
- Since $I^{\prime}(a)=u, d[u / x]$ satisfies $Q(a / x)$ on I^{\prime} too
- In fact, $\mathbf{Q}(a / x)$ has no free variables, no x, in it
- So d itself satisfies $\mathbf{Q}(a / x)$ on I^{\prime}
(taking an x-variant of d isn't necessary)
- A sentence is satisfied by every assignment on an I if it's satisfied by some assignment on I.
- So every assignment satisfies $Q(a / x)$ on I^{\prime}
- So by def., $\mathbf{Q}(a / x)$ is true on I^{\prime}

Inductive step: $\exists \mathrm{E}$

- So we have:
- 「k+1's members are all true on I^{\prime}
- Pk+1 is false on I^{\prime}
- ($\exists x) Q$ is true on I^{\prime}
- $Q(a / x)$ is true on I^{\prime}
- Recall assumption (iii): $\lceil k+1 \cup\{Q(a / x)\} \vDash P k+1$.
- So $\mathrm{Pk}_{\mathrm{k}+1}$ is true on I^{\prime}.
- Contradiction.
- So not: some I mem $\Gamma k+1$ true and makes Pk+1 false.

Inductive step: $\exists \mathrm{E}$

- Recall, we showed earlier that what we need is this:
- If $\Gamma k+1 \vDash(\exists x) Q$ and $\Gamma k+1 \cup\{Q(a / x)\} \vDash P k+1$, then $\Gamma k+1 \vDash P k+1$ (assuming our restrictions on a)
- We assumed (i) a doesn't occur in Pk+1, ($\exists x) Q$, or in any member of $\Gamma k+1$, (ii) $\Gamma k+1 \vDash(\exists x) Q$, and (iii) $\lceil k+1 \cup\{Q(a / x)\} \vDash P k+1$.
- And we showed this implied $\Gamma \mathrm{k}+1 \vDash \mathrm{Pk}+1$.
- So we've shown that line $k+1$ is q-entailed by the open assumptions with scope over it when it's justified by $\exists \mathrm{E}$
24.241 Logic I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

