3.4E

4c

No, it does not follow. Sometimes it is the case that there is truth-value assignment that makes \mathbf{P} true and one that makes \mathbf{P} false, and a truth-value assignment that makes \mathbf{Q} true and one that make \mathbf{Q} false, but there is no one truth-value assignment such that both \mathbf{P} and \mathbf{Q} are true on that assignment.

An example: 'A' and '~ A' are both truth-functionally indeterminate, but $\{A, A, A\}$ is not truth-functionally consistent.

3.5E

With many of these questions, you can see what the answer is without constructing the truth-table. You need to construct the truth-table, nevertheless. It's good for you.

I've used the same conventions as the last answers: main connectives singled out by vertical lines around their columns, numbers at the bottom to indicate the order of calculation.

1d

This argument is truth-functionally valid. Here's the truth-table:

A	W	Y	$\ \sim$	(Y	\equiv	A)	\sim	Y	$ \sim$	A	W	&	\sim	W
T	Т	T	F	Т	Т	Т	F	Т	F	Т	Т	F	F	Т
T	T	F	$\parallel T$	F	F	T	T	F	F	T	T	F	F	T
T	F	T	F	T	T	T	F	T	F	T	F	F	T	F
T	F	F	$\parallel T$	F	F	T	T	F	F	T	F	F	T	F
F	T	T	$\parallel T$	T	F	F	F	T	T	F	T	F	F	T
F	T	F	F	F	T	F	T	F	T	F	T	F	F	T
F	F	T	T	T	F	F	F	T	T	F	F	F	T	F
F	F	F	F	F	T	F	T	F	T	F	F	F	T	F
			2	0	1	0	1	0	1	0	0	2	1	0

You may have the rows in a different order — that's fine.

As you can see, there are no rows such that all of the premises get assigned T and the conclusion gets assigned F (as there are no rows such that all of the premises get assigned T at all). So the argument is truth-functionally valid.

2c

This argument is truth-functionally valid. Observe:

A	B	A	$ \supset$	\sim	A	(B	\supset	A)	\supset	B	A	≡	\sim	B
T	T	T	F	F	T	Т	Т	Т	T	Т	Т	F	F	T
T	F	T	F	F	T	F	T	T	F	F	T	T	T	F
F	T	F	T	T	F	T	F	F	T	T	F	T	F	T
F	F	F	T	T	F	F	T	F	F	F	F	F	T	F
		0	2	1	0	0	1	0	2	0	0	2	1	0

There is one row that assigns both premises true: the $\langle F, T \rangle$ row (marked out by horizontal lines). As you can see, that row assigns T to the conclusion. So there are no rows such that all of the premises get assigned T and the conclusion gets assigned F. So the argument is truth-functionally valid.

2d

Ergh — one of the sentence letters is a 'T'. Don't confuse the sentence letter 'T' with the truth-value 'T' below.

This argument is truth-functionally invalid. Here is a shortened truth-table that shows that.

J	M	T	J	\vee	[M]	\supset	(T	\equiv	J)]	((M	\supset	J)	&	(T	\supset	M)	Т	&	\sim	M
T	T	T	T	T	T	T	T	T	T		Т	T	Т	Т	T	T	T	Т	F	F	T
			0	3	0	2	0	1	0		0	1	0	2	0	1	0	0	2	1	0

4f

Let A = 'The butler murdered Devon'; B = 'The maid is lying'; C = 'The gardener murdered Devon'; D = 'The weapon was a slingshot'.

The argument:

$$\frac{(A \supset B)\&(C \supset D)}{(B \equiv \sim D)\&(\sim D \supset A)}$$

This argument is not truth-functionally valid. Check it out:

A	B	C	D	(A	\supset	B)	&	(C	\supset	D)	(B	≡	\sim	D)	&	$(\sim$	D	\supset	A)	A
F	F	T	T	F	T	F	T	T	T	T	F	T	F	T	T	F	T	T	F	F
				0	1	0	2	0	1	0	0	2	1	0	3	1	0	2	0	

5c

No, it does not follow. Here is a counterexample. Let $\mathbf{P}=A \lor B$, $\mathbf{Q}=A$, $\mathbf{R}=B$. $\{A \lor B'\}$ truth-functionally entails $A \lor B$, obviously. $\{A \lor B'\}$ does not truth-functionally entail A (consider A false, B true), and it does not truth-functionally entail B (consider A true, B false).

3.6E

Throughout this section, when I say something like 'there is no truth-value assignment such that' blah, what I mean is 'there is no truth-value assignment such that, on that assignment' blah.

2b

$$\begin{split} \Gamma \models \ulcorner \mathbf{P} \supset \mathbf{Q} \urcorner & \text{iff there is no truth-value assignment such that every member of } \Gamma & \text{is true and } \ulcorner \mathbf{P} \supset \mathbf{Q} \urcorner & \text{is false. There is no truth-value assignment such that every member of } \Gamma & \text{is true and } \ulcorner \mathbf{P} \supset \mathbf{Q} \urcorner & \text{is false iff there is no truth-value assignment such that every member of } \Gamma & \text{is true, } \mathbf{P} & \text{is true and } \mathbf{Q} & \text{is false (by the definition of `⊃`). There is no truth-value assignment such that every member of } \Gamma & \text{is true, and } \mathbf{Q} & \text{is false iff there is no truth-value assignment such that every member of } \Gamma & \text{is true and } \mathbf{Q} & \text{is false iff there is no truth-value assignment such that every member of } \Gamma & \text{of } \Gamma & \text{of$$

Q.E.D.

3b

Suppose $\Gamma \models \mathbf{P}$ and $\Gamma \models \neg \sim \mathbf{P} \neg$. Then

- (1) there is no truth-value assignment such that every member of Γ is true and **P** is false, and
- (2) there is no truth-value assignment such that every member of Γ is true and $\sim \mathbf{P}$ is false.

By (2) (and the definition of '~'), there is no truth-value assignment such that every member of Γ is true and \mathbf{P} is true. From this and (1) it follows that there is no truth-value assignment such that every member of Γ is true and \mathbf{P} is true and there is no truth-value assignment such that every member of Γ is true and \mathbf{P} is false. But if there is any truth-value assignment such that every member of Γ is true, it is either such that every member of Γ is true and \mathbf{P} is true or it is such that every member of Γ is true and \mathbf{P} is false. So there is no truth-value assignment such that every member of Γ is true. So Γ is truth-functionally inconsistent.

So if $\Gamma \models \mathbf{P}$ and $\Gamma \models \neg \sim \mathbf{P} \neg$, then Γ is truth-functionally inconsistent. Q.E.D.

4a

Suppose $\{\mathbf{P}\} \models \mathbf{Q}$, and $\{\ulcorner \sim \mathbf{P} \urcorner\} \models \mathbf{R}$. Then

- (1) there is no truth-value assignment such that \mathbf{P} is true and \mathbf{Q} is false, and
- (2) there is no truth-value assignment such that $\sim \mathbf{P}$ is true and \mathbf{R} is false.

- By (2) (and the definition of ' \sim '),
- (3) there is no truth value assignment such that \mathbf{P} is false and \mathbf{R} is false.

Now, every truth-value assignment is either such that \mathbf{Q} is true or such that \mathbf{Q} is false. So, by (1),

(4) if a truth-value assignment is such that \mathbf{P} is true, it is such that \mathbf{Q} is true.

And every truth-value assignment is either such that \mathbf{R} is true or is such that \mathbf{R} is false. So, by (3)

(5) if a truth-value assignment is such that \mathbf{P} is false, then it is such that \mathbf{R} is true.

But every truth-value assignment is either such that \mathbf{P} is true or such that \mathbf{P} is false. So, by (4) and (5), every truth-value assignment is either such that \mathbf{Q} is true or such that \mathbf{R} is true. So (by the definition of ' \lor '), every truth-value assignment is such that $\lceil \mathbf{Q} \lor \mathbf{R} \rceil$ is true. So $\lceil \mathbf{Q} \lor \mathbf{R} \rceil$ is truth-functionally true. So if $\{\mathbf{P}\} \models \mathbf{Q}$, and $\{\lceil \sim \mathbf{P} \rceil\} \models \mathbf{R}$, then $\lceil \mathbf{Q} \lor \mathbf{R} \rceil$ is truth-functionally true.

Q.E.D.

4c

Suppose $\Gamma \models \mathbf{P}$ and $\Gamma' \models \mathbf{Q}$. Then

- (1) there is no truth-value assignment such that every member of Γ is true and **P** is false, and
- (2) there is no truth value assignment such that every member of Γ' is true and \mathbf{Q} is false.

By (1), there is no truth-value assignment such that every member of $\Gamma \cup \Gamma'$ is true and **P** is false. And by (2), there is no truth-value assignment such that every member of $\Gamma \cup \Gamma'$ is true and **Q** is false. So (by the definition of '&') there is no truth-value assignment such that $\Gamma \cup \Gamma'$ is true and $\lceil \mathbf{P} \& \mathbf{Q} \rceil$ is false. So $\Gamma \cup \Gamma' \models \lceil \mathbf{P} \& \mathbf{Q} \rceil$.

So, if $\Gamma \models \mathbf{P}$ and $\Gamma' \models \mathbf{Q}$, then $\Gamma \cup \Gamma' \models \ulcorner \mathbf{P} \& \mathbf{Q} \urcorner$. Q.E.D. MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.