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Plan 

Re: course feedback 

Review of course structure 

Recap of truth-functional completeness? 

Soundness of SD 
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The course structure
 
Basics of arguments and logical notions (deductive validity and 
soundness, logical truth, falsity, consistency, indeterminacy, 
equivalence 

SL: syntax and semantics 

Derivation system SD (and SD+) 

Meta-logic: proofs about SL and SD / SD+ 

PL: syntax and semantics 

Derivation system PD (and PD+, PDE) 

Meta-logic: proofs about PL and PD / PD+ / PDE 
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Last time 


Mathematical induction 

Strategy: (1) Insert relevant definitions in the claim you want 
to prove. (2) Arrange a sequence for the induction. (3)
Formulate basis clause and inductive hypothesis. (4) Prove basis 
clause. (5) Prove inductive hypothesis by assuming its 
antecedent (n case) and deducing its consequent (n+1 case). 

Truth-functional completeness 
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Truth-functional 

completeness 


Truth-function: a mapping, for some positive integer n, from 
each combination of TVs n sentences can have to a TV. 

E.g. for two sentences: {T,F}X{T,F} → {T,F}. 

More generally: {T,F}n → {T,F} 

SL is truth-functionally complete iff for every truth-function f, 
there is an SL sentence P that expresses f. 

P expresses f iff P’s truth-table is the characteristic truth-
table for for f 
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Truth-functional 

completeness 


We can state this more formally than in TLB: 

An truth-function f is a set of ordered pairs like this: 
{<<T,T>, T>, <<T,F>, F>, <<F,T>, F>, <<F,F>, F>} 

P expresses f iff for any i that is a member of f, when the 
atomic components of P are assigned the TVs in the 1st 
member of i, P receives the TV that’s the 2nd member of i. 
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Truth-functional 

completeness 


Why care? We want to use SL and truth-tables to test for TF-
truth, validity, consistency, etc. 

Suppose we couldn’t express some TF in SL, e.g. neither/nor. 

Then we would have no sentence of SL that expressed the 
same truth-function as ‘Neither Alice nor Bill can swim.’ 

But then SL wouldn’t let us use a TT to show that the sentence 
is TF-entailed by {`Alice can swim if and only if Bill can swim’,
`If Alice can swim, then Carol can’t swim’, `Carol can swim’}. 

Similar points apply to other truth-functions and tests for 

truth-functional properties and relations 
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Truth-functional 

completeness 


So we want to know that we can express every truth-function 

We know this because we can set out an algorithm that, for 

any truth-function f, generates a sentence that expresses f. 


We can do this by focusing on each row of the TT that 

represents f, finding characteristic sentences for each 
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Truth-functional 

completeness 


Look at each value left of the vertical line in row i. (We’re 

going to pick a sentence for each value.) 


If the first value is T, we pick A. If it’s F, we pick ∼A. 


If the second value is T, we pick B. If it’s F, we pick ∼B, etc. 


Form the iterated conjunction of all these sentences. 


This is the CS for row i. 
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Truth-functional 

completeness 


Repeat the procedure for other rows until you have a CS for 
each row 

Now find a sentence P that expresses the TF represented by
the whole TT. Look at the values right of the vert line. 

If there are no Ts, P is any contradiction, e.g. A&∼A. 


If there is just one T, on row i, P is the CS for row i. 


If there are Ts on multiple rows, P is the iterated 
disjunction of the CSs for those rows. 
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Ex: Find a sentence that expresses the TF for 
this TT schema: 

T T T F
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F F

(A&B)&C
(A&B)&∼C 
(A&∼B)&C
(A&∼B)&∼C 
(∼A&B)&C
(∼A&B)&∼C 
(∼A&∼B)&C
(∼A&∼B)&∼C 

There are Ts right of the vertical line on rows 3, 5, and 7. 

So we want an interated disjunction of the CSs for those rows. 

(((A&∼B)&C) v ((∼A&B)&C)) v ((∼A&∼B)&C) 
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Soundness 


SD is sound iff if Γ ⊢ P in SD, then Γ ⊨ P. 

Why do we care about soundness of SD? 

In doing logic, we care about truth. E.g.: If the sentences in Γ 

are true, must P be true? That is, are derivations always

truth-preserving? 


If we want to use a derivation in SD of P from Γ to help us 
tell whether the truth of a given sentence follows from the 
truth of some other sentences, then derivations in SD better 
be a guide to truth-functional entailment! 

I.e. it better be that if Γ ⊢ P in SD, then Γ ⊨ P. 
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Soundness 


So how do we prove that if Γ ⊢ P in SD, then Γ ⊨ P? 

Mathematical induction of course! 

Let’s start with a reminder of the definitions for ‘⊢’ and `⊨’. 


Γ ⊨ P iff every TVA that makes all members of Γ true also 
makes P true. 

Γ ⊢ P (in SD) iff there is a derivation (in SD) in which all 
the primary assumptions are members of Γ and P occurs in 
the scope of only those assumptions. 
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Soundness 


Let’s think now about the sequence on which we’ll use MI. 


A natural sequence to use is derivation length. We could try: 

Basis clause: For any 1-line derivation (in SD) in which all the 
primary assumptions are members of Γ and P occurs in the 
scope of only those assumption, Γ ⊨ P. 
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Soundness 


Then our inductive hypothesis would be: 

IH: If (A) For any n-line derivation in which all the primary 
assumptions are members of Γ* and Q occurs in the scope of 
only those assumption, Γ* ⊨ Q, then (B) for any n+1-line 
derivation in which all the primary assumptions are members of 
Γ^ and R occurs in the scope of only those assumption, Γ^ ⊨ R. 
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Soundness 

But this won’t work! Exploring why will help us understand why
the proof in the book goes the way it does. 

Suppose we’ve assumed (A), the n-line case. 

Now we’re working on (B), the n+1-line case. 

In this situation, we’d like to be able to know that the nth 
line of the n+1-line derivation is OK 

Then we’d just have to show that adding the n+1st line 
doesn’t get us into trouble. 

So we’d like to use our assumption (A)... 

But this is where the proof hits trouble... 
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Soundness 

(A) doesn’t guarantee anything about the nth line in an n+1 line 
derivation! (Why?) 

(A) For any n-line derivation in which all the primary 
assumptions are members of Γ* and Q occurs in the scope of 
only those assumption, Γ* ⊨ Q. 

(A) only applies if the sentence on the nth line is only in the 
scope of primary assumptions! 

And in an n+1 line derivation, the nth line might not be only in
the scope of primary assumptions. 

So (A) doesn’t guarantee that in our n+1-line derivation we 
didn’t already go wrong in getting to line n. 
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Soundness 

So what do we do? We need (A) to be stronger, so that it 
applies to the nth line of an n+1-line derivation. (Compare our 
proof last time of 6.1E (1a).) 

So we make the inductive hypothesis stronger, and make the 
basis clause stronger accordingly. That’s why the proof in the 
book is as complex as it is! 

New basis clause: In any derivation, if Γ1 is the set of open 
assumptions with scope over sentence P1 on line 1, then 
Γ1 ⊨ P1. 

Importantly, we’re NOT requiring that the assumptions in Γ1 be 
primary assumptions. 
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Soundness 


New inductive hypothesis: If (A) then (B). 

(A) In any derivation, for every line i ≤ n, if Γi is the set of 
open assumptions with scope over sentence Pi on line i, then 
Γi ⊨ Pi. 

(B) In any derivation, if Γn+1 is the set of open assumptions 
with scope over sentence Pn+1 on line n+1, then 
Γn+1 ⊨ Pn+1. 
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Soundness 

Now, prove the basis clause: 

In any derivation, if Γ1 is the set of open assumptions with 
scope over sentence P1 on line 1, then 
Γ1 ⊨ P1. 

Since P1 is on line 1, P1 must be an assumption. 

And since every assumption is in its own scope, and there 
aren’t any other sentences before P1, the set of open 
assumptions with scope over P1 is just {P1}. So Γ1 = {P1}. 

Trivially, {P1} ⊨ P1, so since Γ1 = {P1}, Γ1 ⊨ P1. 
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Soundness 

Now let’s prove the inductive hypothesis by assuming (A). 

(A) In any derivation, for every line i ≤ n, if Γi is the set of 
open assumptions with scope over sentence Pi on line i, then 
Γi ⊨ Pi. 

Now suppose Γn+1 is the set of open assumptions with scope 
over sentence Pn+1 on line n+1. 

We need to show that Γn+1 ⊨ Pn+1. 

(A) entails that Γn ⊨ Pn, and similarly for every earlier line. 

So we only need to show that we didn’t go wrong in the step to 
line n+1. 
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Soundness 


Pn+1 on line n+1 had to be justified by one SD’s rules. 

So we can proceed by showing that whichever rule justified 
Pn+1, the result is that Γn+1 ⊨ Pn+1. 

I’ll just go a couple of the rules. (The other cases are in TLB.) 

Suppose Pn+1 is justified by conjunction elimination applied to 
a conjunction Pn+1&R (or R&Pn+1) on line j. 

We know that since j < n+1, Γj ⊨ Pn+1&R (or R&Pn+1) 

So Γj ⊨ Pn+1. 
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Soundness 

Now, if Pn+1 is justified by the sentence on line j, then all the 
assumptions open at j must still be open at n+1. 

That means that Γj ⊆ Γn+1. So we can show that Γn+1 ⊨ Pn+1 
if we can prove the following: 

(*) If Γj ⊨ Pn+1 and Γj ⊆ Γn+1, then Γn+1 ⊨ Pn+1. 

We can prove that easily: if a TVA me.m. Γn+1 true and Γj ⊆ 
Γn+1, then it me.m. Γj is true. So if every TVA that me.m. Γj 
true also makes Pn+1 true, then every TVA that me.m. Γn+1 
true me.m. Γj true, and hence makes Pn+1 true. 

So (*) is true. And we know its antecedent is true: Γj ⊨ Pn+1 
and Γj ⊆ Γn+1. So it follows that Γn+1 ⊨ Pn+1. 
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Soundness 

Now we’ve made some progress on establishing (B) given (A). 


(B) In any derivation, if Γn+1 is the set of open assumptions 
in whose scope is a sentence Pn+1 on line n+1, then 
Γn+1 ⊨ Pn+1. 

For we’ve shown that given (A), (B) holds whenever Pn+1 is 
justified by conjunction elimination. 

If we check all the other rules, then we’ll have proven given 

(A) that however we got Pn+1 from earlier lines, Γn+1 ⊨ Pn+1. 

So we’ll have proven (B) given (A). So we’ll have proven the 
inductive hypothesis and finished our MI proof. 
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Soundness 

Suppose Pn+1 is justified by applying ∼I to lines h-k ≤ n+1. 

Then Pn+1 is of the form ∼Q, line h is Q, and lines j ≤ k and k 
contain some contradictory R and ∼R. 

Since j and k ≤ n+1, we know that (A) applies to lines j and k, 
so Γj ⊨ R and Γk ⊨ ∼R. 

For ∼I to apply, we can’t have closed any assumptions between 
h and n+1 except Q. So we know that Γj-Q and Γk-Q are 
subsets of Γn+1. So Γj ⊆ Γn+1 ∪ {Q} and Γk ⊆ Γn+1 ∪ {Q}. 

But that means Γn+1 ∪ {Q} ⊨ R and Γn+1 ∪ {Q} ⊨ ∼R. 

So Γn+1 ⊨ ∼Q. 
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