Logic I - Session 10

Plan

- Re: course feedback
- Review of course structure
- Recap of truth-functional completeness?
- Soundness of SD

The course structure

- Basics of arguments and logical notions (deductive validity and soundness, logical truth, falsity, consistency, indeterminacy, equivalence
- SL: syntax and semantics
- Derivation system SD (and SD+)
- Meta-logic: proofs about SL and SD / SD+
- PL: syntax and semantics
- Derivation system PD (and PD+, PDE)
- Meta-logic: proofs about PL and PD / PD+ / PDE

Last time

- Mathematical induction
- Strategy: (1) Insert relevant definitions in the claim you want to prove. (2) Arrange a sequence for the induction. (3) Formulate basis clause and inductive hypothesis. (4) Prove basis clause. (5) Prove inductive hypothesis by assuming its antecedent (n case) and deducing its consequent ($n+1$ case).
- Truth-functional completeness

Truth-functional completeness

- Truth-function: a mapping, for some positive integer n, from each combination of TVs n sentences can have to a TV.
- E.g. for two sentences: $\{T, F\} X\{T, F\} \rightarrow\{T, F\}$.
- More generally: $\{T, F\}^{n} \rightarrow\{T, F\}$
- SL is truth-functionally complete iff for every truth-function f, there is an SL sentence P that expresses f.
- P expresses f iff P's truth-table is the characteristic truthtable for for f

Truth-functional completeness

- We can state this more formally than in TLB:
- An truth-function f is a set of ordered pairs like this: $\{\langle\langle T, T\rangle, T\rangle,\langle\langle T, F\rangle, F\rangle,\langle\langle F, T\rangle, F\rangle,\langle\langle F, F\rangle, F\rangle\}$
- P expresses f iff for any i that is a member of f, when the atomic components of P are assigned the TVs in the 1st member of i, P receives the TV that's the 2nd member of i.

Truth-functional completeness

- Why care? We want to use SL and truth-tables to test for TFtruth, validity, consistency, etc.
- Suppose we couldn't express some TF in SL, e.g. neither/nor.
- Then we would have no sentence of SL that expressed the same truth-function as 'Neither Alice nor Bill can swim.'
- But then SL wouldn't let us use a TT to show that the sentence is TF-entailed by \{'Alice can swim if and only if Bill can swim', 'If Alice can swim, then Carol can't swim', 'Carol can swim'\}.
- Similar points apply to other truth-functions and tests for truth-functional properties and relations

Truth-functional completeness

- So we want to know that we can express every truth-function
- We know this because we can set out an algorithm that, for any truth-function f, generates a sentence that expresses f.
- We can do this by focusing on each row of the TT that represents f, finding characteristic sentences for each

Truth-functional completeness

- Look at each value left of the vertical line in row i. (We're going to pick a sentence for each value.)
- If the first value is T, we pick A. If it's F, we pick $\sim A$.
- If the second value is T, we pick B. If it's F, we pick $\sim B$, etc.
- Form the iterated conjunction of all these sentences.
- This is the CS for row i.

Truth-functional completeness

- Repeat the procedure for other rows until you have a CS for each row
- Now find a sentence P that expresses the TF represented by the whole TT. Look at the values right of the vert line.
- If there are no Ts, P is any contradiction, e.g. A\&~A.
- If there is just one T, on row i, P is the CS for row i.
- If there are Ts on multiple rows, \mathbf{P} is the iterated disjunction of the CSs for those rows.
- Ex: Find a sentence that expresses the TF for this TT schema:

T	T	T	F	$(\mathrm{A} \& B) \& C$
T	T	F	F	$(\mathrm{~A} \& B) \& \sim C$
T	F	T	T	$(\mathrm{~A} \& \sim B) \& C$
T	F	F	F	$(\mathrm{~A} \& \sim B) \& \sim C$
F	T	T	T	$(\sim \mathrm{~A} \& B) \& C$
F	T	F	F	$(\sim \mathrm{~A} \& B) \& \sim \mathrm{C}$
F	F	T	T	$(\sim \mathrm{A} \& B) \& C$
F	F	F	F	$(\sim \mathrm{~A} \& \sim B) \& \sim \mathrm{C}$

- There are Ts right of the vertical line on rows 3,5 , and 7 .
- So we want an interated disjunction of the CSs for those rows.
- $(((A \& \sim B) \& C) \vee((\sim A \& B) \& C)) \vee((\sim A \& \sim B) \& C)$

Soundness

- SD is sound iff if $\Gamma \vdash P$ in $S D$, then $\Gamma \vDash P$.

Why do we care about soundness of SD?

- In doing logic, we care about truth. E.g.: If the sentences in Γ are true, must P be true? That is, are derivations always truth-preserving?
- If we want to use a derivation in SD of P from Γ to help us tell whether the truth of a given sentence follows from the truth of some other sentences, then derivations in SD better be a guide to truth-functional entailment!
- I.e. it better be that if $\Gamma \vdash P$ in $S D$, then $\Gamma \vDash P$.

Soundness

- So how do we prove that if $\Gamma \vdash P$ in $S D$, then $\Gamma \vDash P$?
- Mathematical induction of course!
- Let's start with a reminder of the definitions for ' \vdash ' and ' \vDash '.
- $\Gamma \vDash P$ iff every TVA that makes all members of Γ true also makes P true.
- $\Gamma \vdash P$ (in SD) iff there is a derivation (in SD) in which all the primary assumptions are members of Γ and P occurs in the scope of only those assumptions.

Soundness

- Let's think now about the sequence on which we'll use MI.
- A natural sequence to use is derivation length. We could try:
- Basis clause: For any 1-line derivation (in SD) in which all the primary assumptions are members of Γ and P occurs in the scope of only those assumption, $\Gamma \vDash \mathbf{P}$.

Soundness

- Then our inductive hypothesis would be:
- IH: If (A) For any n-line derivation in which all the primary assumptions are members of Γ^{*} and Q occurs in the scope of only those assumption, $\Gamma^{*} \vDash Q$, then (B) for any $n+1$-line derivation in which all the primary assumptions are members of Γ^{\wedge} and R occurs in the scope of only those assumption, $\Gamma^{\wedge} \vDash R$.

Soundness

- But this won't work! Exploring why will help us understand why the proof in the book goes the way it does.
- Suppose we've assumed (A), the n-line case.
- Now we're working on (B), the $n+1$-line case.
- In this situation, we'd like to be able to know that the nth line of the $n+1$-line derivation is OK
- Then we'd just have to show that adding the $n+1$ st line doesn't get us into trouble.
- So we'd like to use our assumption (A)...
- But this is where the proof hits trouble...

Soundness

- (A) doesn't guarantee anything about the nth line in an $n+1$ line derivation! (Why?)
- (A) For any n-line derivation in which all the primary assumptions are members of Γ^{*} and \mathbf{Q} occurs in the scope of only those assumption, $\Gamma^{*} \vDash \mathbf{Q}$.
- (A) only applies if the sentence on the nth line is only in the scope of primary assumptions!
- And in an $n+1$ line derivation, the nth line might not be only in the scope of primary assumptions.
- So (A) doesn't guarantee that in our $n+1$-line derivation we didn't already go wrong in getting to line n.

Soundness

- So what do we do? We need (A) to be stronger, so that it applies to the nth line of an $n+1$-line derivation. (Compare our proof last time of 6.1E (1a).)
- So we make the inductive hypothesis stronger, and make the basis clause stronger accordingly. That's why the proof in the book is as complex as it is!
- New basis clause: In any derivation, if $\Gamma 1$ is the set of open assumptions with scope over sentence P1 on line 1, then $\Gamma 1 \vDash \mathrm{P} 1$.
- Importantly, we're NOT requiring that the assumptions in $\Gamma 1$ be primary assumptions.

Soundness

- New inductive hypothesis: If (A) then (B).
- (A) In any derivation, for every line $i \leq n$, if Γi is the set of open assumptions with scope over sentence Pi on line i, then $\Gamma i \vDash \mathrm{Pi}$.
- (B) In any derivation, if $\Gamma n+1$ is the set of open assumptions with scope over sentence $P n+1$ on line $n+1$, then $\Gamma n+1 \vDash \mathrm{P} n+1$.

Soundness

- Now, prove the basis clause:
- In any derivation, if $\Gamma 1$ is the set of open assumptions with scope over sentence P1 on line 1, then $\Gamma 1 \vDash$ Pl.
- Since P1 is on line 1, P1 must be an assumption.
- And since every assumption is in its own scope, and there aren't any other sentences before P1, the set of open assumptions with scope over P1 is just $\left\{\mathrm{Pl}_{1}\right\}$. So $\Gamma 1=\{\mathrm{P} 1\}$.
- Trivially, $\{P 1\} \vDash P 1$, so since $\Gamma 1=\{P 1\}, \Gamma 1 \vDash P 1$.

Soundness

- Now let's prove the inductive hypothesis by assuming (A).
- (A) In any derivation, for every line $i \leq n$, if Γi is the set of open assumptions with scope over sentence Pi on line i, then $\Gamma i=$ Pi.
- Now suppose $\Gamma n+1$ is the set of open assumptions with scope over sentence $\mathrm{P} n+1$ on line $n+1$.
- We need to show that $\Gamma n+1 \vDash P n+1$.
- (A) entails that $\Gamma n \vDash P n$, and similarly for every earlier line.
- So we only need to show that we didn't go wrong in the step to line $n+1$.

Soundness

- Pn+1 on line $n+1$ had to be justified by one SD's rules.
- So we can proceed by showing that whichever rule justified $\mathrm{P} n+1$, the result is that $\Gamma \mathrm{n}+1 \models \mathrm{P} \mathrm{n}+1$.
- I'll just go a couple of the rules. (The other cases are in TLB.)
- Suppose Pn+1 is justified by conjunction elimination applied to a conjunction $P n+1 \& R$ (or $R \& P n+1$) on line j.
- We know that since $\mathrm{j}<\mathrm{n}+1, \Gamma \mathrm{j} \vDash \mathrm{P} n+1 \& \mathrm{R}$ (or $R \& P \mathrm{n}+1$)
- So $\Gamma j \vDash \mathrm{Pn}+1$.

Soundness

- Now, if P_{n+1} is justified by the sentence on line j, then all the assumptions open at j must still be open at $n+1$.
- That means that $\Gamma \mathrm{j} \subseteq \Gamma \mathrm{n}+1$. So we can show that $\Gamma \mathrm{n}+1 \vDash \mathrm{Pn}+1$ if we can prove the following:
- (*) If $\Gamma j \vDash P n+1$ and $\Gamma j \subseteq \Gamma n+1$, then $\Gamma n+1 \vDash P n+1$.
- We can prove that easily: if a TVA me.m. $\Gamma n+1$ true and $\Gamma j \subseteq$ $\Gamma \mathrm{n}+1$, then it me.m. $\Gamma \mathrm{j}$ is true. So if every TVA that me.m. $\Gamma \mathrm{j}$ true also makes Pn+1 true, then every TVA that me.m. $\Gamma n+1$ true me.m. $\Gamma \mathrm{j}$ true, and hence makes $\mathrm{P} n+1$ true.
- So (*) is true. And we know its antecedent is true: $\Gamma \mathrm{j} \vDash \mathrm{Pn}+1$ and $\Gamma \mathrm{j} \subseteq \Gamma n+1$. So it follows that $\Gamma n+1 \vDash \mathrm{Pn}+1$.

Soundness

- Now we've made some progress on establishing (B) given (A).
- (B) In any derivation, if $\Gamma n+1$ is the set of open assumptions in whose scope is a sentence $P n+1$ on line $n+1$, then $\Gamma n+1 \neq \mathrm{P} n+1$.
- For we've shown that given (A), (B) holds whenever P_{n+1} is justified by conjunction elimination.
- If we check all the other rules, then we'll have proven given (A) that however we got $\mathrm{P} n+1$ from earlier lines, $\Gamma n+1 \models \mathrm{P} n+1$.
- So we'll have proven (B) given (A). So we'll have proven the inductive hypothesis and finished our MI proof.

Soundness

- Suppose $P n+1$ is justified by applying $\sim I$ to lines $h-k \leq n+1$.
- Then P_{n+1} is of the form $\sim \mathbf{Q}$, line h is \mathbf{Q}, and lines $j \leq k$ and k contain some contradictory R and $\sim R$.
- Since j and $k \leq n+1$, we know that (A) applies to lines j and k, so $\Gamma j \vDash R$ and $\Gamma k \vDash \sim R$.
- For \sim I to apply, we can't have closed any assumptions between h and $n+1$ except Q. So we know that $\Gamma j-Q$ and $\Gamma k-Q$ are subsets of $\Gamma n+1$. So $\Gamma j \subseteq \Gamma n+1 \cup\{Q\}$ and $\Gamma k \subseteq \Gamma n+1 \cup\{Q\}$.
- But that means $\Gamma n+1 \cup\{Q\} \vDash R$ and $\Gamma n+1 \cup\{Q\} \vDash \sim R$.
- So $\Gamma \mathrm{n}+1 \vDash \sim \mathbf{Q}$.
24.241 Logic I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

