
Logic I - Session 11




Plan for today


Damien’s comments on quiz 

My comments on teaching feedback 

A bit more on the TF-completeness of SL 

Recap of proof of soundness of SD: 

If Γ ⊢ P in SD, then Γ ⊨ P


Begin to prove completeness of SD:

 If Γ ⊨ P, then Γ ⊢ P in SD




TF-completeness 
We can express any truth-function in SL. 

Find a sentence that expresses the TF for this TT schema: 

T T T

T F F

F T T

F F F

A&B

A&∼B

∼A&B

∼A&∼B

We want an iterated disjunction of CSs for the T rows: 1 and 3. 

(A&B) v (∼A&B). 



TF-completeness 
Strictly, we haven’t yet proven that SL is TF-complete. We’d need to show 
that our algorithm always yields a sentence that expresses the truth-
function we want. See 6.1E (1d) and 6.2E (1). 

Not only is SL truth-functionally complete, but so is any language that 
contains formulae TF-equivalent to every sentence of SL. 

E.g. {&,v,∼}. (After all, that’s all we use in our algorithm!) 

In fact, we can achieve TF-completeness with a single binary connective, ‘|’. 

P Q P | Q
T T F
T F T
F T T
F F T



TF-completeness with ‘|’


To see this, just add a step to our algorithm: translate the old 
sentence into one that only contains ‘|’. 

The new one will be equivalent, so it will have the same TT, so it 
will expresses the same truth-function. 

In our example, our algorithm generated (A&B) v (∼A&B). 

To find an equivalent sentence, make replacements in stages. 



                

TF-completeness with ‘|’

We start with (A&B)v(∼A&B), which is of the form PvQ. 

Now,  PvQ iff 

(P|P) | (Q|Q).


Substitute  (A&B) and (∼A&B) for P and Q 

(A&B)v(∼A&B)

((A&B)|(A&B)) | ((∼A&B)|(∼A&B))


Now replace the remaining sub-sentences. 

(A&B) iff (A|B)|(A|B). And (∼A&B) iff ((A|A)|B)|((A|A)|B). 

So we get:                   
((A|B)|(A|B) | (A|B)|(A|B)) | (((A|A)|B)|((A|A)|B) | ((A|A)|B)|((A|A)|B)) 



TF-completeness with ‘|’


We’ve just looked at one sentence. We haven’t yet proven that a language L 
with just ‘|’ is TF-complete. 

To do that, we need to prove that for any sentence of SL, there is an 

equivalent sentence in L.


Provide an algorithm Z that makes step-by-step replacements like we did.
Then prove that: 

Each step of Z preserves TV, and 

For any PSL of SL, Z turns PSL into a sentence PL of L. 



Soundness of SD


Basic strategy to show soundness of SD: Use MI to prove that 
(*) holds for any line n of any SD derivation: 

(*) If Pn is the sentence on line n and Pn is in the scope of 
only the assumptions in Γn, then Γn ⊨ Pn. 

So for our induction sequence, we use lines of SD derivations.


For basis clause: (*) holds for n=1. 

For inductive clause: if (*) holds up to line n, it holds for n+1.


Pn+1 had to be justified by applying some SD rule to earlier 

lines. So, prove for each SD rule X: If Pn+1 is justified by X 

and (*) holds up to the nth line, then (*) holds for the n+1st.




Soundness of SD

(*) If Pn is the sentence on line n and Pn is in the scope of 
only the assumptions in Γn, then Γn ⊨ Pn. 

Most of the proof involves the last step, going through each rule 
to prove this: 

For each SD rule X: If Pn+1 is justified by X and (*) holds up 
to the nth line, then (*) holds for the n+1st. 

Last time, we went through &E and ∼I. Let’s do one more: ⊃I.


So suppose Pn+1 is justified by applying ⊃I, and that (*) holds 
through line n. Then Pn+1 is of the form Qi⊃Rk. 

So, to prove: If Qi⊃Rk on line n+1 is justified by ⊃I and is in the 
scope only of assumptions in Γn+1, then Γn+1 ⊨ Qi⊃Rk. 



Soundness of SD

Since Qi⊃Rk is justified by ⊃I, we have a subderivation from an 

auxiliary assumption Qi on line i to Rk on line k, where i<k<n+1.


And since (*) applies for all n < n+1, it applies to i and k.


So Γk ⊨ Rk.


Now note that since Qi⊃Rk on line n+1 is justified by applying ⊃I 

to the subderivation on i-k, no assumptions in Γk can have been 

closed before n+1 except Qi.


In other words, every assumption open at k, apart from Qi, must 
still be open at n+1. 

So Γk ⊆ Γn+1 ∪ {Qi}. 



Soundness of SD


So far we have: 

(a)    Γk ⊆ Γn+1 ∪ {Qi}, and 

(b)    Γk ⊨ Rk. 

Now remember from last time that for any sets Γ1 and Γ2:

 If Γ1 ⊆ Γ2, then if Γ1 ⊨ S, then Γ2 ⊨ S. 

So in particular, from (a), we know that since Γk ⊆ Γn+1 ∪ {Qi}: 

(c) If Γk ⊨ Rk then Γn+1 ∪ {Qi} ⊨ Rk. 

So putting together (b) and (c): Γn+1 ∪ {Qi} ⊨ Rk. 

So Γn+1 ⊨ Qi⊃Rk. I.e. Γn+1 ⊨ Pn+1. 



Completeness of SD 
To prove: If Γ ⊨ P, then Γ ⊢ P (in SD). 

By contraposition, this is equivalent to: 

Γ ⊬ P then Γ ⊭ P. 

So we can assume Γ ⊬ P and try to prove Γ ⊭ P. 

We need lots of intermediate steps to do it... 

...and an important new notion: maximal consistency 

Γ is maximally consistent in SD (MC-SD) iff Γ is 
consistent in SD and Γ would become inconsistent if any 
additional sentence were added to it. 



  

          

Γ ⊬ P Plan for proving 
(1) ↓ completeness 
Γ ∪ {∼P} is C-SD 

(4) ↓ 
Γ ∪ {∼P} ⊆ Γ* (for some Γ* that’s MC-SD)  (6.4.5) 
+ 

For any Γ* that’s MC-SD, Γ* is TF-C  (6.4.8) (5) → 
(3) ↓ 
Γ ∪ {∼P} is TF-C 

(2) ↓ 
Γ ⊭ P


Γ ⊬ P then Γ ⊭ P. 


If Γ ⊨ P, then Γ ⊢ P.




Completeness of SD

To prove: If Γ ⊬ P, then Γ ∪ {∼P} is C-SD 

Suppose Γ ∪ {∼P} is NOT C-SD. Then it’s inconsistent in SD. 

Then, by def., some Q and ∼Q are derivable from it. 

But that means we can derive Q and ∼Q in a sub-derivation 
from Γ together with the assumption ∼P. 

We could then perform ∼E on the subderivation, yielding P. 

So we could get P in the scope of only the assumptions in Γ. 

So if Γ ∪ {∼P} is NOT C-SD, then Γ ⊢ P. 

So if Γ ⊬ P, then Γ ∪ {∼P} is C-SD 



  

          

Γ ⊬ P Plan for proving 
↓↓☑ completeness 

Γ ∪ {∼P} is C-SD 

↓ 
Γ ∪ {∼P} ⊆ Γ* (for some Γ* that’s MC-SD) (6.4.5)
+ 

For any Γ* that’s MC-SD, Γ* is TF-C (6.4.8)→ 
↓ 

Γ ∪ {∼P} is TF-C 

↓ 
Γ ⊭ P


Γ ⊬ P then Γ ⊭ P. 


If Γ ⊨ P, then Γ ⊢ P.




Completeness of SD 
Next, let’s prove: 

If Γ ∪ {∼P} is TF-consistent (TF-C), then Γ ⊭ P.


So assume Γ ∪ {∼P} is TF-consistent (TF-C).


By def., there’s a TVA that m.e.m. Γ ∪ {∼P} true.


A TVA m.e.m. true Γ ∪ {∼P} iff it m.e.m. Γ true and P 

false.


So there’s a TVA that m.e.m. Γ true and P false.


So by def., Γ ⊨ P iff there’s NO TVA that does that.


So Γ ⊭ P.




  

          

Γ ⊬ P Plan for proving 
↓↓☑ completeness 

Γ ∪ {∼P} is C-SD 

↓ 
Γ ∪ {∼P} ⊆ Γ* (for some Γ* that’s MC-SD) (6.4.5)
+ 

For any Γ* that’s MC-SD, Γ* is TF-C (6.4.8)→ 
↓ 

Γ ∪ {∼P} is TF-C 

↓☑ 
Γ ⊭ P


Γ ⊬ P then Γ ⊭ P. 


If Γ ⊨ P, then Γ ⊢ P.




Completeness of SD

Next, let’s prove: 

If Γ ∪ {∼P} ⊆ Γ* for some Γ* that’s MC-SD and 

for any Γ* that’s MC-SD, Γ* is TF-C, then Γ ∪ {∼P} is TF-C


So assume Γ ∪ {∼P} ⊆ Γ* for some Γ* that’s MC-SD and 

for any Γ* that’s MC-SD, Γ* is TF-C.


Suppose Γ ∪ {∼P} is NOT TF-C. 

Then there’s no TVA that m.e.m. Γ ∪ {∼P} true. 

But since Γ ∪ {∼P} ⊆ Γ*, any TVA that m.e.m. Γ* true would also m.e.m. Γ ∪


{∼P} true.


So there’s no TVA that m.e.m. Γ* true.                   I.e.: Γ* is NOT TF-C.


But since Γ* is MC-SD, and for any Γ* that’s MC-SD, Γ* is TF-C, Γ* is TF-C.


Our assumption led to a contradiction. So Γ ∪ {∼P} is TF-C 



  

          

Γ ⊬ P Plan for proving 
↓↓☑ completeness 

Γ ∪ {∼P} is C-SD 

↓ 
Γ ∪ {∼P} ⊆ Γ* (for some Γ* that’s MC-SD) (6.4.5)
+ 

For any Γ* that’s MC-SD, Γ* is TF-C (6.4.8)→ 
↓☑ 

Γ ∪ {∼P} is TF-C 

↓☑ 
Γ ⊭ P


Γ ⊬ P then Γ ⊭ P. 


If Γ ⊨ P, then Γ ⊢ P.
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