Subject 24.242. HW Sample answers.

1. Write a register program that calculates $(x+y)$.
2. If Register $\mathbf{2}$ is $\mathbf{0}$, go to 5 .
3. Subtract 1 from Register 2, unless it's 0 .
4. Add 1 to register 1.
5. Go to 1 .
6. STOP.
7. Show that a set is Δ if and only if its characteristic function is Σ. (The characteristic function χ_{s} of a set S is given by stipulating that $\chi_{s}(n)=1$ if $n \in S$, and it's equal to 0 if $n \notin S$.
(\Rightarrow) If the set S is Δ, then there are bounded formulas $\varphi(x, y)$ and $\psi(x, y)$ such that $S=\{x$: $(\exists y) \varphi(x, y)$, and its complement is $\{x:(\exists y) \Psi(x, y)\}$. Then χ_{s} is equal to $\{<x, z>:(\exists y)((\varphi)([x], y) \wedge z$ $=\mathbf{s} 0) \vee(\Psi(x, y) \wedge z=0))$.
(\Leftarrow) Suppose χ_{s} is Δ; say it's $\{<x, y>:(\exists z) \theta([x],[y], z)$. The S is equal to $\{x:(\exists z) \theta([x], s 0, z)$, and its complement is $\{x:(\exists z) \theta([x], 0, z)\}$.
