Subject 24.242. Logic II. Sample problems from the third homework, due Thursday, March 18
For each term τ, we have defined a code number $\ulcorner\tau\urcorner$, according to the following prescription:

$$
\begin{aligned}
& { }^{7} 7=\operatorname{Pair}(1,1) . \\
& \left.{ }^{\prime} x_{i}\right\urcorner=\operatorname{Pair}(2, i) .
\end{aligned}
$$

$$
\begin{aligned}
& \tau(\tau+\rho\rceil)=\operatorname{Pair}(5, \operatorname{Pair}(\ulcorner\tau\urcorner, \Gamma \rho\rceil)) . \\
& \tau(\tau \cdot \rho\rceil)=\operatorname{Pair}(6, \operatorname{Pair}(\ulcorner\tau\urcorner,\ulcorner\rho\urcorner)) \text {. } \\
& (\tau E \rho\urcorner)=\operatorname{Pair}(7, \operatorname{Pair}(\ulcorner\tau\urcorner,\ulcorner\rho\urcorner)) \text {. }
\end{aligned}
$$

$\operatorname{Pair}(x, y)$ is, you will recall, $1 / 2(x+y)(x+y+1)+x$.

1. Give the Arabic numeral for $\Gamma(0+0)$.
2. Show that a set of natural numbers is decidable if and only if it is either finite or the range of an increasing calculable total function. (A total function f is increasing iff, for any x and y, if $x<y$, then $f(x)<f(y)$.)
