
Peano Arithmetic 

Peano Arithmetic1 or PA is the system we get from Robinson's Arithmetic by adding the 

induction axiom schema: 

((R(0) A (Yx)(R(x) - R(sx))) - (Yx)R(x)). 

What this means is that any sentence of the language of arithmetic that you get from the schema 

by replacing the schematic letter "R" with a formula, then prefixing universal quantifiers to bind 

all the free variables is an axiom of PA. Thus PA consist of the axioms (Ql) through (Q1 I), 

together with infinitely many induction axioms. 

The induction axiom schema formalizes a familiar method of reasoning about the natural 

numbers. To show that every natural number has the property expressed by the formula we 

substitute for "R," we begin by showing that 0 has the property; this is the base case. Next we 

derive, by conditional proof, the conditional 

Wx)(R(x) - R(sx)); 

we assume R(x) as inductive hypothesis, then derive R(sx). The rule of mathematical induction 

permits us to infer (Vx)R(x). 

Virtually all of our ordinary mathematical reasoning about the natural numbers can be 

formalized in PA. Indeed, after some initial awkwardness, in which we produce proofs of facts 

of elementary arithmetic that we've taken for granted since childhood, reasoning in PA is nearly 

indistinguishable from ordinary arithmetical thinking. 

1'11 do a couple of these early proofs informally here, just to get an idea of what's going 

on. 

1 The so-called Peano axioms were first formulated by Richard Dedekind. Peano said as 

much in a footnote, but somehow "Peano Arithmetic" was the name that stuck. 
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Proposition 1. PA t(Vx)(x = 0 V (3y)x = sy). 

Proof: Use the following induction axiom: 

[[(0 = 0 V (3y)O = sy) A (Vx)((x = 0 V (3y)x = sy) - (sx = 0 V (3y)sx = sy))] 

- ('V'x)(x = 0 v (3y)x = sy)] 

The antecedent is a theorem of pure 1ogic.m 

Proposition 2. PA ~(VX)(O + x) = x. 

Proof: Use the following induction axiom: 

[[(0 + 0) = 0 A (Vx)((O + x) = x + (0 + sx) = sx)] - (Vx)(O + x) = x] 

The base clause, "(0 + 0) = 0," follows from (43). To get the induction step, assume, as 

inductive hypothesis (M) that (0 + x) = x. We have 

(0 + sx) = s(0 + x) [by (44)] 

= sx [by IH] . q 

Proposition 3. PA t(Vx)(Vy)(sx + y) = s(x + y). 

Proof: We use the following induction axiom: 

(Vx)[[(sx + 0) = s(x + 0) A (Vy)((sx + y) = s(x + y) - (sx + sy) = s(x + sy))] 

- ('V'Y)(SX + Y) = s(x + Y)I. 

The base clause is easy. Two applications of (43) yield 

(sx + 0) = sx 

= s(x + 0) 

To get the induction step, assume, as IH, 

(SX + y) = s(x + y). 

We have: 
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(SX + SY) = s(sx + Y) [by (4411 

= ss(x + y) [by IH] 

= S(X + sy) [by (44) again]. H 

Proposition 4 (Commutative law of addition). PA t(b'x)(Vy)(x + y) = (y + x). 

Proof: We use this induction axiom: 

(b'x)[[(x + 0) = (0 + x) WY)((X + Y) = (Y + x) + (x + SY) = (SY + x))l 

- (b'y)(x + Y) = (Y + x)l. 

(43) gives us "(x + 0) = x," and Proposition 2 gives us "(0 + x) = x"; these together yield the 

base clause, "(x + 0) = (0 + x)." To get the induction step, assume as IH: 

(x + Y) = (Y + XI- 

We have: 

(X + SY) = s(x + Y) [by (4411 

= s(y + x) [by IH] 

= (sy + x) [by Proposition 31 H 

Proposition 5 (Associative law of addition). PA t(b'x)(Vy)(b'z)((x + y) + z) 

= (x + (y + z)). 

Proof: Two applications of (43) give us the basis clause, "((x + y) + 0) = (x + (y + O))." To get 

the induction step, assume as IH: 

((x + Y) + z) = (x + (Y + z)). 

We have: 

((x + y) + sz) = s((x + y) + z) [by (4411 

= s(x + (y + z)) [by IHI 
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= (x + s(y + z)) [by (4411 

= (X + (y + sz)) [by (4411-• 

Proposition 6. PA t('dx)(o.x) = 0. 

Proof: The base clause, "(0.0) = 0," comes from (Q5). To get the induction, assume as IH: 

(0.x) = 0. 

We have: 

(0.s~) = ((0.x) + 0) [by (4611 

= (0.x) [by (4411 

=O [by IH] . q 

Proposition 7. PA t(~x)(b '~)(sx.~)  = ((xmy) + y). 

Proof: We derive the base clause as follows: 

(sx.0) = o [by (Q5) 

= (x.0) [by (Q5) again1 

= ((x0y) + 0) [by (Q3)I. 

Assuming, as IH, 

(sx0y) = ((x0y) + Y), 

we compute: 

(sxosy) = ((sxoy) + sx) [by (4611 

= (((X~Y) + Y) + sx) [by IHI 

=((x.y) + (y + sx)) [by Proposition 51 

= ( (X~Y) + S(Y + x)) [by (4411 

=((x.y) + s(x + y)) [by Proposition 41 
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= ( (x*~)  + (x + SY)) [by (4411 

= (((xmy) + x) +sy) [by Proposition 51 

= ((x*sY) + SY) [by (4611-rn 

Proposition 8 (Commutative Law of Multiplication). PA t(x*y) = (y*x). 

Proof: The base clause, "(x*O) = (O*x)," uses (Q5) and Proposition 6. As inductive hypothesis, 

assume: 

(x*Y) = (Y*x). 

We compute: 

(X*SY) = ( (x*~)  + x) [by 4611 

= ((y*x) + x) [by IHI 

= (sy*x) [by Proposition 71. rn 

Proposition 9 (Distributive law). PA t(b'x)(Vy)(Vz)(x*(y + z)) = ((x*y) + (xmz)). 

Proof: We prove this equivalent formula: 

(b'y)(~z)Wx)(x*(y + 4 )  = ((x*y) + (xaz)), 

by using this induction axiom: 

(b'Y)(W [[(Om (Y + 4 )  = ((O*Y)+ (0.~1) A Wx)((x* (Y + 4 )  = ((x*y) + (x*z)) - 
(sx*(y + z)) = ((sx*y) + (sxez)))l - (b'x)(x*(y + z)) = ((x*y) + (x*z))l 

To get the base clause, we compute: 

(O*(y + z)) = 0 [by Proposition 61 

= (0 + 0) [by (4311 

= ((0.y) + (0.z)) [by Proposition 6 again]. 

In proving the induction step, we assume the IH: 
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(x*(Y + z)) = ((x*Y) + (xaz)). 

Now we calculate: 

(SX*(Y + z)) = ((x*(Y + z)) + (Y + z)) [by Proposition 71 

= (((x0y) + (xaz)) + (Y + 4 )  [by IHI 

= ((x*y) + ((x*z) + (y + z))) [by Proposition 51 

= ((x*y) + (((xoz) + y) + z)) [by Proposition 51 

= ((x*y) + ((y + (x*z)) + z)) [by Proposition 41 

= ((x*y) + (y + ((x*z) + z))) [by Proposition 51 

= (((x*y) + y) + ((x*z) + z)) [by Proposition 51 

= ((sxoy) + (sx*z)) [by Proposition 71. H 

Proposition 10 (Associative law of multiplication). PA t(~x)(b '~)(Vz)((x~~)*z)  

= (x* (y*z)). 

Proof: The induction axiom we intend to employ is this: 

(V~)(VY)[[ ( (~*Y)~~)  = (x0(y*O)) A (Vz)(((x0y).z) = (x*(y0z)) - ((xay)*sz) = 

(x*(yasz)))l - (Vz)((xay)*z) = (xa(y*z))l. 

We get the base clause thus: 

((x* y ) * ~ )  = o [by (4611 

= (x*O) [by (4611 

= (x*(yaO)) [by (4611. 

To get the induction step, we assume this IH: 

((xay)*z) = (xa(y*z)). 

We compute: 
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((xay)*sz) = (((xay)*z) + (x*~))  [by (4611 

= ((xa(y*z)) + (x0y)) [by IHI 

= (x*((yaz) + Y)) [by Proposition 91 

= (x*(yosz)) [by (4611-rn 

We could keep going like this for a very long time. 

The induction axiom schema we have been using is sometimes called the "weak 

induction schema," to distinguish it form the following strong induction schema: 

(WX)(WY < X)SY - Sx) - 0 ' ~ ) s ~ ) -  

In applying this schema, we assume as inductive hypothesis that every number less than x has 

the property represented by Sx, then try to show that x has the property. If we succeed, we 

conclude that every number has the property. We don't need to assume the instances of the 

strong induction schema as additional axioms, because we can derive them using the regular 

induction schema. Specifically, the induction axiom we use is this: 

[[(VY < 0)SY A (Vx)((Vy < x)Sy - (VY < sx)Sy)l - Wx)(Vy < x)Syl. 

The inductive hypothesis, "(Vy < O)Sy," is a consequence of (Q9). (Q10) tells us that the 

induction clause, "(Vx)((Vy < x)Sy - (Vy < sx)Sy)," is equivalent to this: 

WX)((VY < X)SY - (VY)((Y < x v Y = x) - SY)), 

which, in turn is equivalent to this: 

(Vx)((Vy < x)Sy - ((VY < x)Sy A Sx)), 

which is equivalent to 

(Vx)((Vy <x)Sy - Sx). 

Thus we have this: 



Peano Arithmetic, p. 8 

((VX)((~Y < X)SY - Sx) - (VX)(VY < x)SY). 

We also have this: 

((VX)(VY < X)SY - Wx)Sx), 

which we obtain by the following derivation: 

1 1 - (VX)(VY)(Y < x - SY) 

1 2- (VY)(Y < sa - SY) 

1 3. (a < sa - Sa) 

(Ql 0) 4. (Vx)(Vy)(x < sy - (x < y V x = y)) 

(Ql 0) 5. (Vy)(a < sy - (a < y V a = y)) 

(Ql 0) 6. (a < sa - (a < a V a =  a)) 

7 . a = a  

(Ql 0) 8. a <  sa 

1, (QlO) 9. Sa 

1, (QlO) 10. (VX)SX 

(Ql 0) 1 1. ((Vx)(Vy < x)sy - (VX)SX) 

PI 

u s ,  1 

u s ,  2 

u s ,  4 

u s ,  5 

RI 

TC, 6 ,7  

TC, 3 ,8  

UG, 9 

CP, 1, 10 

Combining results, we obtain: 

((Vx)((Vy < x)Sy - Sx) - (Vx)Sx). 

What we'd like to do now is reverse the process, showing how we could, if we had 

chosen, have taken the strong induction schema as axiomatic, and derived the weak induction 

schema. However, our attempt to do so runs into a glitch. We used weak induction to derive 

Proposition 1, the statement that every number is either 0 or a successor. If we replace weak by 

strong induction, we can't derive Proposition 1. Indeed, it's possible to put together a model of Q 
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+ the strong induction schema in which Proposition 1 is false (though we won't do so here). 

What we can show, however, is that Q + Proposition 1 + the strong induction schema entails the 

weak induction schema. Thus, what we want to show is this: 

((RO A Wx)(Rx - Rsx)) - Wx)Rx). 

Strong induction gives us this: 

(Wx)(Wy < ~ ) R Y  - Rx) - (Vx)Rx). 

So what we need to show is this: 

((RO A Wx)(Rx - Rsx)) - Wx)(Wy < ~ ) R Y  - 
Assume 

RO 

and 

(Vx)(Rx - Rsx) 

Take any y. What we want to show is this: 

(WY < ~ ) R Y  - Rx). 

If x = 0, this follows immediately from our assumption that RO. So we may assume (using 

Proposition 1) that x is a successor; say x = sz. So what we have to show is this: 

((Vy < sz)Ry - RSZ. 

We assumed (Vx)(Rx - Rsx), which gives us this: 

(Rz - Rsz). 

So what we need is this: 

((Vy < sz)Ry - Rz). 

In other words, 
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(TI 

We have 

((Vy)(y < sz - Ry) - (z < sz - Rz)). 

Since "z < sz" is a consequence of (Q1 I), (T) follows immediately. 

Plug in "- Qx" in place of "Sx" in the strong induction schema, and you get a schema 

logically equivalent to the following: 

((3x)Qx - (3x)(Qx A (VY < - QY)). 

This schema is a formalized version of the well-orderingprinciple: Every nonempty collection 

of natural numbers has a least element. 

The induction axiom schema is a formalized version of the 

Principle of Mathematical Induction. Any collection that contains 0 and 

contains the successor of any natural number it contains contains every 

natural number. 

This principle is central to out reasoning about the natural numbers. A reason for this 

centrality is singled out in the following: 

Theorem (Richard Dedekind). Any two models of Q that both satisfl the 

principle of mathematical induction are is om or phi^.^ 

2 An isomorphism fiom a model U to a model 23 of the language of arithmetic is a bijection 

f fiom IUI to 1231 that satisfies the following conditions: 

f(03) = oB. 

f(ser(x)) = sB(f(x)). 

f(x y) = f(x) +% f(y). 
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Proof: Let f be the smallest subcollection of IUI x 1231 that meets these conditions: 

(Dl) <OU,OB> is in the collection. 

(D2) If <x,y> is in the collection, so is <sU(x), s'(~)>. 

That is, f is the intersection of all subcollections of IUI x 1231 that satisfl (Dl) and (D2). 

f is a function from 131 to 1231. To see this, note, first, that f pairs 0' with one and only one 

U B element of 1231: <O , 0 > E f by (Dl). If y + oB, f - {<o',~>) satisfies (Dl) and (D2), which 

implies, since f is smallest, that f - {<o',~>) = f and <o',~> C f. 

Next, assume that f pairs x with one and only one element y of 1931. Because f satisfies 

(D2), the pair <sU(x), is in f. Suppose that z + s ~ ( ~ ) .  Let g = f - {<sU(x),*). Because U 

satisfies (Ql), sU(x) + o', and so g satisfies (Dl). To see that g also satisfies (D2), take <a,b> E 

g. If sU(a) + sU(x), <sU(a), sB(b)> will be in g because it's in f. If sU(a) = sU(x), then, because U 

satisfies (Q2), a = x. Because f pairs x with only one element of 131, b must be equal to y, and so 

sB(b) + Z; hence, again, <sU(a), sB(b)> is in g. Thus g satisfies (Dl) and (D2). Because f is the 

smallest class that satisfies (Dl) and (D2), g must be equal to f, which means that <sU(x), z> isn't 

in f. Consequently, f pairs sU(x) with s ~ ( ~ ) ,  and with nothing else. 

f(x 0% y) = f(x) 0% f(y). 

f(x E' y) = f(x) E~ f(y). 

x 3 y iff f(x) <' f(y). 

If o is a variable assignment for U, then, for any formula 4 ,  o satisfies 4 in U iff foo 

satisfies 4 in 23. (foo is defined by setting foo(v) equal to f(o(v)).) It follows that the 

same sentences are true in U and in 23. 
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Let C be the set of elements of IUI that are paired by f with exactly one element of 131. We 

see that 0% is in C and that, whenever x is in C, sU(x) is in C. Because U satisfies the principle of 

mathematical induction, C must be equal to IUI, which means that f is a function fiom IUI to 1231. 

A similar argument, this time using the fact that 23 satisfies the principle of mathematical 

induction, shows that f is a bijection. 

To complete the proof that f is an isomorphism, we have to show several things. We have 

to show that f(oU) = oB; this follows immediately fiom the way f was defined. For each of the 

function signs of the language, we have to show that f respects the operation of the function sign; 

for example, we have to show that f(x +' y) = f(x) +' f(y). Finally, we have to show that f 

preserves the "<" relation, that is, that x 3 y iff f(x) <' f(y). Of these, we'll only write out the 

proofs for "s" and "+" here. 

(Dl) tells us that, if <x,y> E f, <sU(x), s ~ ( ~ ) >  E f. Consequently, for x E IUI, since 

<s,f(x)> E f, <sU(x), sB(f(x))> E f, that is, f(s3(x)) = sB(f(x)). 

To get the clause for "+," pick x E 1'311. Let E = {y E IUI: f(x +' y) = f(x) +' f(y)). We 

want to show that 0' is in E, and also to show that, if y is in E, so is s'(~). Because U satisfies the 

principle of mathematical induction, this will suffice to show that every member of IUI is in E. 

Because U satisfies (Q3), x +' 0' = X. Because 23 satisfies (Q3), f(x) +' 0% = f(x). 

Consequently, f(x +' 0%) = f(x) = f(x) +% oB = f(x) +B f(oQL), and 0' is in E. 

Suppose that y is in E. We compute 

f(x +U syY)) = f(sU(x y)) [because U satisfies (Q4)] 

= sB(f(x y)) [because f respects "s"] 

= sB(f(x) +% f(y)) [because y E El 
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23 23 
= f(x) + S ( f (~))  [because U satisfies (Q4)] 

= f(x) +23 f(syY)) [because f respects "s"]. 

Therefore, s'(~) is in E.H 

Now we have a puzzle. Dedekind's theorem tells us that any model of Q that satisfies the 

principle of mathematical induction is isomorphic to the standard model. In particular, since true 

arithmetic includes Q and it also includes all the instances of the induction axiom schema, all 

models of true arithmetic ought to be isomorphic to the standard model. But they aren't. The 

Compactness Theorem tells us that there are nonstandard models of true arithmetic, that is, 

models of true arithmetic that aren't isomorphic to the standard model. 

The solution to this puzzle is to realize that the induction axiom schema doesn't hlly 

succeed in expressing the content of the principle of mathematical induction. What the induction 

axiom schema tells us is that the principle of mathematical induction is satisfied by every 

collection that is named by some predicate of the lang~age.~ There's no way the schema could 

tell us about collections that aren't named by predicates of the language. The collections that 

appear in the proof of Dedekind's theorem - the domain of the function f, and so on - aren't 

named by predicates of the language. 

3 To put the matter a little more precisely, let U be a model of the language of arithmetic. 

Extend the language of arithemetic by adding a new constant to serve as a standard name 

of each element of the universe of U. If U satisfies all the induction axioms, we are 

assured that the priniciple of mathematical induction holds for every subcollection of IUI t 

hat is the extension of some predicate of the extended language. The slogan is that the 

priniciple holds for collections that are named by some "predicate with parameters" in U. 
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To realize the full strength of the principle of mathematical induction, we have to go 

beyond the familiar language of arithmetic to the language of second-order arithmetic. In 

addition to the familiar symbols of the language of arithmetic, this new language includes the 

second-order variables, "X,," "X,," "X,," "X,," and so on.4 The definition of "formula" is 

changed in two ways: For any term T, KT is an atomic formula. Also, if 4 is a formula, so are 

(3XJ4 and @'&)a. The distinction of "free" and "bound" occurrences of second-order 

variables, and the distinction between sentences and other formulas, works exactly the way it did 

for the first-order language. 

The definition of "model" is unchanged, but there are small changes in the semantics. A 

variable assignment for a model U assigns an element of IUI to each ordinary variable (or each 

individual variable, as they're called in this context), and it assigns a subset of IUI to each 

second-order variable. a satisfies &T iff the individual T denotes with respect to a is an element 

of o(X,,,). An &-variant of a variable assignment a agrees with a except perhaps in what it 

assigns to K. a satisfies (3X,,,)4 in U iff some &-variant of a satisfies 4 in U. a satisfies 

(VX,,,)$ in U iff every &-variant of a satisfies 4 in U. 

4 We are allowing second-order variables to take the place of unary predicates. We could 

also, if we wanted, allow second-order variables that take the place of predicates of more 

than one arguments. As far as what what we're doing here goes, this wouldn't make any 

differencebecause we can use the h c t i o n  Pair to translate things we want to say about 

binary relations on the natural numbers into statements about properties of natural 

numbers. 
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Second-order PA consists of axioms (Q 1) through (Q 1 I), together with the following 

second-order induction axiom: 

(vxo)((xoo A WY)(XOY - Xosy)) - (~Y)XOY). 

Thus we can write down second-order PA as a single sentence of the second-order language of 

arithmetic. 

Because the second-order variables range over all subcollections of the universe of 

discourse, not just those subcollections that happen to be named by some formula or other, the 

second-order induction axiom expresses the full strength of the principle of mathematical 

induction. Dedekind's theorem amounts to the following: 

Corollary. Second-order PA is categorical; that is, any two models of the 

theory are isomorphic. 


