
Coding Proofs 

What we'd like to do now is to see how to take proofs and code them arithmetically. The 

details are complicated, but the idea is simple. A proof is a sequence of expressions, and we 

know already how to code expressions as a numbers and how to code a sequence of numbers as a 

single number. 

A couple of technical points require attention. The logical system we learned in Logic I 

required an infinite reservoir of infinite constants. It's not hard to give a system of rules that 

doesn't need the constants, but it's even easier to expand our system of Godel numbering to 

accommodate the extra constants. Where 'Sf is the language of arithmetic, let 'Sf, be the language 

obtained from 'Sf by adding infinitely many new individual constants c,, c,, c,, c,,. . . . We can 

extend our system of Godel numbering by letting rc,l be Pair(3,n). That's why we skipped pairs 

and triples beginning with 3 when we gave our earlier Godel numbering for S f ;  we were leaving 

room for the new constants. 

Our deductive calculus from Logic I included bunch of simple rules and one very 

complicated rule, Tautological Consequence (TC), which permits you to write down any 

sentence that is either a tautology or a tautological consequence, taking as premiss set the union 

of the premiss sets of those earlier lines. TC is complex enough that it would be a lot of work to 

describe its operation arithmetically. Rather than doing so, we can replace TC with a bunch of 

simpler rules. There are many ways to do this. One method, which is particularly simple and 

which fits seamlessly with the system of rules we learned in Logic I, is to replace the rule TC 

with three new rules: 

Modus Ponens: If you've derived 4 with premise set r and ( 4  - q )  with premise 

set A, you may write $ with premiss set I? u A. 



Modus Tollens: If you've derived 4 with premise set I? and (- @ - - 4) with 

premise set A, you may write @ with premise set r u A. 

DeJnitional Exchange: You may replace (4 V @) with (-4 - @) or vice versa, 

keeping the same premise set. Similarly for (4 A @) and -(a - -@); and for (4 

* $1 and ((4 - @I A (@ - 4))). 
For a proof that these new rules are a satisfactory replacement for TC, see Benson Mates, 

Elementary Logic (New York: Oxford University Press, 1972). It's not surprising that the Mates' 

system meshes nicely with the rules from Logic I, since the rules for Logic I were lifted fiom his 

book. 

Where 4 is a sentence of St! and I? is a A set of sentences1 of St!, a number s is said to be a 

proof of 4 from I? just in case s is a sequence of ordered pairs <x,y> with the following 

properties: 

x is a code of a finite set n of sentences of St!,. 

y is a code of a sentence @ of St!,. 

Either @ is an element of n (so that @ is derivable from n by rule 

PI) or @ is derivable with premiss set fiom one or more of the 

earlier members of s by one of the rules other than PI. 

The last member of s has r@ as its second component and the code of a subset of 

I? as its first. 

To spell this out in detail, we would have to specifl, rule by rule, what it takes for one line to be 

1 What this really means is that the set of code numbers of members of I? is A. In the 

future, we shall frequently efface the distinction between a sentence or set of sentences 

and its code number. I hope that no confusion results. 



derived from an earlier line by a rule. For example <x,y> is derived from <z,w> by rule CP iff 

there is a v < y such that y = Triple(l3,v,w) and, for any u < s, u E z iff (u E x or u = v). Going 

through the details helps inculcate the virtues of patience and endurance, but it doesn't inspire 

any intellectual virtues, so we won't do it here. 

What we get is a x formula Br that strongly represents the relation {<s, re>: s is the 

code of a proof of 4 from I')' in Q, and hence in any consistent theory that includes Q. If we 

define a x formula Bewr (from the German "Beweis," for "proof ') by: 

Bewr(x) =D,, ( 3 s ) ~  Br x, 

we get a formula that weakly represents {x: x is the code of a consequence of I?) in Q and in any 

other o-consistent theory that includes Q. 

In defining "Bewr," we have supposed that I' is a A system of axioms. This looks 

unnecessarily restrictive. In order to have a proof procedure for the set of consequences of a set 

of axioms, it's enough to have a proof procedure for the set of axioms; we don't need a decision 

procedure. To generate the consequences, we need to be reliably able to recognize the axioms; 

we don't have to be able to recognize the nonaxioms. Thus it would appear that we would 

benefit from employing a more liberal notion of provability that allowed us to start with a 2 set 

of axioms, rather than a A set. It turns out that this appearance is illusory, because of the 

2 In writing out the formula that strongly represents proofs in I', we'll use some x formula 

y(x) to strongly represent to set of axioms of I'. There are lots of different x formulas we 

could use to strongly represent I', and the each choice would give us a different formula 

to represent the proof-in-I' relation. In some out-of-the-way comers of logic, this makes a 

difference, but it won't matter for us here. To be hlly explicit, we ought to write "By(X),'' 

rather than "Br," but the mildly ambiguous notation won't do us any harm. 



following theorem: 

Craig's Theorem. Let be a set of sentences. Then there is a A set of 

sentences that has the same consequences as r. 
Proof: If I? is the empty set, it's already A, and we're done. If I? is nonempty, it is the range of 

some A total function, call it f. Let n = {Triple(lS,n,f(n)): n a natural number}. 

n is A. It's obviously 2. To see that it's 11, note that its complement is {z: lstin3(z) + 15 

or 3rdin3 (z) + f(2ndin3(z))}. 

The members of n are all obtained from members of r by prefixing a vacuous universal 

quantifier. The members of are obtained from members of by deleting a vacuous initial 

universal quantifier. So r and n are logically equiva1ent.H 


